-
Notifications
You must be signed in to change notification settings - Fork 6
/
data-scraper-v2alpha.py
289 lines (255 loc) · 11.4 KB
/
data-scraper-v2alpha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from bs4 import BeautifulSoup
import time
from datetime import date, datetime, timedelta
import cloudscraper
import numpy as np
import pandas as pd
import os
import hashlib
import argparse
import re
#import httpx
#import cfscrape
# Default Query parameter
MARKET = 'residential'
TYPE = 'condo'
STATE = 'kl'
### CODE STARTS HERE ###
property_type = {'all':'',
'bungalow':'&property_type_code%5B%5D=BUNG&property_type_code%5B%5D=LBUNG&property_type_code%5B%5D=ZBUNG&property_type_code%5B%5D=TWINV&property_type_code%5B%5D=TWINC&property_type=B',
'condo':'&property_type_code%5B%5D=CONDO&property_type_code%5B%5D=APT&property_type_code%5B%5D=FLAT&property_type_code%5B%5D=PENT&property_type_code%5B%5D=SRES&property_type_code%5B%5D=STDIO&property_type_code%5B%5D=DUPLX&property_type_code%5B%5D=TOWNC&property_type=N',
'semid':'&property_type_code%5B%5D=SEMI&property_type_code%5B%5D=CLUS&property_type=S',
'terrace':'&property_type_code%5B%5D=TERRA&property_type_code%5B%5D=TOWN&property_type_code%5B%5D=TER1&property_type_code%5B%5D=TER15&property_type_code%5B%5D=TER2&property_type_code%5B%5D=TER25&property_type_code%5B%5D=TER3&property_type_code%5B%5D=TER35&property_type=T',
'land':'&property_type_code%5B%5D=RLAND&property_type=L'}
state = {'all':'',
'johor':'®ion_code=MY01',
'kedah':'®ion_code=MY02',
'kelantan':'®ion_code=MY03',
'melaka':'®ion_code=MY04',
'ns':'®ion_code=MY05',
'pahang':'®ion_code=MY06',
'penang':'®ion_code=MY07',
'perak':'®ion_code=MY08',
'perlis':'®ion_code=MY09',
'selangor':'®ion_code=MY10',
'terengganu':'®ion_code=MY11',
'sabah':'®ion_code=MY12',
'sarawak':'®ion_code=MY13',
'kl':'®ion_code=MY14',
'labuan':'®ion_code=MY15',
'putrajaya':'®ion_code=MY16',
'other':'®ion_code=MY99'}
def BSPrep(URL):
exitcode = 1
while exitcode == 1:
try:
trial = 0
while trial < 10:
scraper = cloudscraper.create_scraper()
#client = httpx.Client(http2=True)
print('Loading '+URL)
s = scraper.get(URL)
soup = BeautifulSoup(s.content, 'html.parser')
if "captcha" in soup.text:
trial += 1
print('Retrying '+' ('+str(trial)+'/10) ...')
time.sleep(0.1)
continue
elif "No Results" in soup.text:
print('Invalid URL, skipping '+URL)
trial = 99
else:
trial = 99
if trial == 10:
print('Trial exceeded, skipping '+URL)
exitcode = 0
return soup
except:
print('Connection reset, retrying in 1 mins...', flush=True)
time.sleep(60)
def Pagination(soup):
pagination = soup.find("ul", class_="pagination")
try:
if pagination.find_all("li", class_="pagination-next disabled"):
pages = int(pagination.find_all("a")[0]['data-page'])
else:
pages = int(pagination.find_all("a")[-2]['data-page'])
except AttributeError:
if soup.find("h1", class_="title search-title").text.split(' ')[2] == '0':
print('No property found. Scraping stopped.')
exit(0)
else:
exit(1)
return pages
def LinkScraper(soup):
links = []
units = soup.find_all("div", itemtype="https://schema.org/Place")
for unit in units:
if unit.find("a", class_="btn btn-primary-outline units_for_sale disabled") and unit.find("a", class_="btn btn-primary-outline units_for_rent disabled"):
continue
prop = unit.find("a", class_="nav-link")
links.append((prop['title'],HEADER+prop["href"]))
return(links)
def InfoExtract(pname, soup, key):
i = -1 if 'sale' in key else 0
type = 'Sale' if 'sale' in key else 'Rent'
for property in soup.find_all(itemtype="https://schema.org/Place"):
listid = property["data-listing-id"]
try:
bed = property.find('span', class_="bed").text.strip()
bath = property.find('span', class_="bath").text.strip()
except AttributeError:
try:
bed = property.find("li", class_="listing-rooms pull-left").text.strip()
bath = property.find("li", class_="listing-rooms pull-left").text.strip()
except AttributeError:
bed = np.nan
bath = np.nan
try:
price = float(property.find("span", class_="price").text.split(' ')[i].replace(',','').strip())
except AttributeError:
price = np.nan
except ValueError:
price = property.find("span", class_="price").text.split(' ')[i].replace(',','').strip()
try:
sqft = int(property.find("li", class_="listing-floorarea pull-left").text.split(' ')[0])
except AttributeError:
sqft = np.nan
except ValueError:
sqft = np.nan
try:
author = property.find('span', class_='name').text
except AttributeError:
author = np.nan
posted = property.find("i", class_="pgicon pgicon-clock-o").text
if posted[-1] == "h":
listtime = str(datetime.now()-timedelta(hours=int(posted[0:-1])))
elif posted[-1] == "d":
listtime = str(datetime.now()-timedelta(days=int(posted[0:-1])))
page_listing = [listid, pname, type, price, bed, bath, sqft, author, listtime]
return page_listing
def PropScrapper(pname, plink, key):
prop_listing = []
soup = BSPrep(plink.replace('/condo/', key))
pid = re.search(r'\d+$', plink).group(0)
title = soup.find('h1', class_='title search-title text-transform-none')
total = title['title'].split(' ')[0]
prop_listing.append(InfoExtract(pname, soup, key)+pid)
if total != 'No' and int(total) > 20:
for page in range(2, int(total)//20+2):
soup = BSPrep(plink.replace('/condo/', key)+'/'+str(page))
prop_listing.append(InfoExtract(pname, soup, key)+pid)
return prop_listing
def md5hash(datafile, hashfile):
h = hashlib.md5()
with open(datafile,'rb') as file:
chunk = 0
while chunk != b'':
chunk = file.read(1024)
h.update(chunk)
with open(hashfile, 'w') as f:
f.write(h.hexdigest())
print('MD5 hash generated to '+hashfile)
def PropTrimmer(props, datafile):
df_old = pd.read_csv(datafile)
prop, link = zip(*props)
len_old_props = len(prop)
last_prop_name = df_old.PropertyName.iat[-1]
prop_index = prop.index(last_prop_name)
props = props[prop_index:]
print('This is a re-run.\nSkipping {} properties scraped previously.'.format(len_old_props-len(props)))
return props, last_prop_name
def argparser():
parser = argparse.ArgumentParser()
try:
parser.add_argument('-m', '--market', default=MARKET, dest='Market', help='eg. Residential, Commercial etc. (default: Condo)')
parser.add_argument('-t', '--type', default=TYPE, dest='Type', help='eg. Condo, Terrace, etc. (default: condo)')
parser.add_argument('-s', '--state', default=STATE, dest='State', help='eg. KL, Selangor, Johor etc. (default: KL)')
args = parser.parse_args()
return args
except:
parser.print_help()
exit()
def main():
# Load first page with Query and scrape no. of pages
print('\n===================================================\nPropertyGuru Property Listing Scraper v2.4-alpha\nAuthor: DicksonC\n===================================================\n')
time.sleep(2)
print('Job initiated with query on {} in {}.'.format(TYPE, STATE))
print('\nLoading '+HEADER+KEY+QUERY+' ...\n')
soup = BSPrep(HEADER+KEY+QUERY)
pages = Pagination(soup)
print(str(pages)+' page will be scrapped.\n')
# Scrape links from first page for properties with both sale and rental listing
props = []
props += LinkScraper(soup)
print('\rPage 1/{} done.'.format(str(pages)))
# Scrape subsequent pages
for page in range(2, pages+1):
soup = BSPrep(HEADER+KEY+'/'+str(page)+QUERY)
props += LinkScraper(soup)
print('\rPage {}/{} done.'.format(str(page), str(pages)))
# Check exising data and remove scraped links
if os.path.exists(RAW_LISTING):
try:
props, last_prop_name = PropTrimmer(props, RAW_LISTING)
error_flag = False
except ValueError or IndexError:
print("EOF does not match. Scraping starts from the beginning.")
error_flag = True
# Scrape details for sale and rental of each properties
data = []
print('\nA total of '+str(len(props))+' properties will be scraped.\n')
try:
for i, prop in enumerate(props):
sale = PropScrapper(*prop, '/property-for-sale/at-')
rent = PropScrapper(*prop, '/property-for-rent/at-')
print(str(i+1)+'/'+str(len(props))+' done!')
data += sale
data += rent
# Result into DataFrame and Analysis
df = pd.DataFrame(data, columns=['ListID','PropertyName','Type','Price','Bedrooms','Bathrooms','Sqft','Author','ListDate','PropertyID'])
# Check if data directory exists
if not os.path.isdir(LIST_DIR):
os.makedirs(LIST_DIR)
# Check exising data and combine
if os.path.exists(RAW_LISTING):
if not error_flag:
df_old = pd.read_csv(RAW_LISTING)
df_old = df_old[df_old.PropertyName!=last_prop_name]
df = pd.concat([df_old, df])
# Raw data saved to file
df.to_csv(RAW_LISTING, index=False)
print('Raw data saved to {}'.format(RAW_LISTING))
except:
print('Error encountered! Exporting current data ...')
# Result into DataFrame and Analysis
df = pd.DataFrame(data, columns=['PropertyName','Type','Price','Bedrooms','Bathrooms','Sqft','Author'])
# Check if data directory exists
if not os.path.isdir(LIST_DIR):
os.makedirs(LIST_DIR)
# Raw data saved to file
df.to_csv(RAW_LISTING, index=False)
print('INCOMPLETE raw data saved to {}'.format(RAW_LISTING))
exit(1)
else:
# Check if hash directory exists
if not os.path.isdir(HASH_DIR):
os.makedirs(HASH_DIR)
md5hash(RAW_LISTING, MD5HASH)
if __name__ == "__main__":
# Initialize arguments
args = argparser()
MARKET, TYPE, STATE= args.Market, args.Type, args.State
# Initialize filenames (leave empty if not generating)
LIST_DIR = './data/{}'.format(date.today().strftime("%b%Y"))
HASH_DIR = './md5hash/{}'.format(date.today().strftime("%b%Y"))
RAW_LISTING = './data/{}/{}-{}-{}-listing.csv'.format(date.today().strftime("%b%Y"),TYPE,STATE,date.today().strftime("%b%Y"))
MD5HASH = './md5hash/{}/{}-{}-{}-listing.md5'.format(date.today().strftime("%b%Y"),TYPE,STATE,date.today().strftime("%b%Y"))
# Initialize URL
HEADER = 'https://www.propertyguru.com.my'
KEY = '/condo/search-project'
if STATE.lower() == 'other':
QUERY = '?limit=200&market='+MARKET.lower()+property_type[TYPE.lower()]+state[STATE.lower()]+'&newProject=all'
else:
QUERY = '?limit=500&market='+MARKET.lower()+property_type[TYPE.lower()]+state[STATE.lower()]+'&newProject=all'
main()