-
Notifications
You must be signed in to change notification settings - Fork 0
/
Failure_of_Form-workbook.twb
2500 lines (2499 loc) · 180 KB
/
Failure_of_Form-workbook.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20241.24.0705.0334 -->
<workbook original-version='18.1' source-build='2024.1.5 (20241.24.0705.0334)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<IntuitiveSorting />
<IntuitiveSorting_SP2 />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<SortTagCleanup />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
</_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule>
</_.fcp.AnimationOnByDefault.false...style>
<datasources>
<datasource caption='Dvoinik_liminality_data' inline='true' name='federated.1tij4d61bds2lz1frksyf0hfptif' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='Dvoinik_liminality_data' name='textscan.0io3ccc1n0ixge1dbqo2c12nr3a9'>
<connection class='textscan' directory='/Users/Katia/Sync/Working files/Digital Dostoevsky/Dvoinik liminality/Data & viz - Working' filename='Dvoinik_liminality_data.tsv' password='' server='' />
</named-connection>
<named-connection caption='Chapter word count' name='textscan.1gf8jim1lfvdhx176k0em0g1k4g6'>
<connection class='textscan' directory='/Users/Katia/Sync/Working files/Digital Dostoevsky/Dvoinik liminality/Data & viz - Working' filename='Chapter word count.tsv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.1gf8jim1lfvdhx176k0em0g1k4g6' name='Chapter word count.tsv' table='[Chapter word count#tsv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator='	'>
<column datatype='integer' name='Chapter' ordinal='0' />
<column datatype='integer' name='Words' ordinal='1' />
<column datatype='integer' name='Paragraphs' ordinal='2' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation type='collection'>
<relation connection='textscan.0io3ccc1n0ixge1dbqo2c12nr3a9' name='Dvoinik_liminality_data.tsv' table='[Dvoinik_liminality_data#tsv]' type='table'>
<columns character-set='windows-1252' header='yes' locale='en_US' separator='	'>
<column datatype='integer' name='Chapter' ordinal='0' />
<column datatype='string' name='Category' ordinal='1' />
<column datatype='string' name='Location' ordinal='2' />
<column datatype='string' name='Text' ordinal='3' />
</columns>
</relation>
<relation connection='textscan.1gf8jim1lfvdhx176k0em0g1k4g6' name='Chapter word count.tsv' table='[Chapter word count#tsv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator='	'>
<column datatype='integer' name='Chapter' ordinal='0' />
<column datatype='integer' name='Words' ordinal='1' />
<column datatype='integer' name='Paragraphs' ordinal='2' />
</columns>
</relation>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<cols>
<map key='[Category]' value='[Dvoinik_liminality_data.tsv].[Category]' />
<map key='[Chapter (Chapter word count.tsv)]' value='[Chapter word count.tsv].[Chapter]' />
<map key='[Chapter]' value='[Dvoinik_liminality_data.tsv].[Chapter]' />
<map key='[Location]' value='[Dvoinik_liminality_data.tsv].[Location]' />
<map key='[Paragraphs]' value='[Chapter word count.tsv].[Paragraphs]' />
<map key='[Text]' value='[Dvoinik_liminality_data.tsv].[Text]' />
<map key='[Words]' value='[Chapter word count.tsv].[Words]' />
</cols>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Dvoinik_liminality_data.tsv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"windows-1252"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>"\\t"</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Chapter word count.tsv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>"\\t"</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Chapter</remote-name>
<remote-type>20</remote-type>
<local-name>[Chapter]</local-name>
<parent-name>[Dvoinik_liminality_data.tsv]</parent-name>
<remote-alias>Chapter</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Category</remote-name>
<remote-type>129</remote-type>
<local-name>[Category]</local-name>
<parent-name>[Dvoinik_liminality_data.tsv]</parent-name>
<remote-alias>Category</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Location</remote-name>
<remote-type>129</remote-type>
<local-name>[Location]</local-name>
<parent-name>[Dvoinik_liminality_data.tsv]</parent-name>
<remote-alias>Location</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Text</remote-name>
<remote-type>129</remote-type>
<local-name>[Text]</local-name>
<parent-name>[Dvoinik_liminality_data.tsv]</parent-name>
<remote-alias>Text</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Chapter</remote-name>
<remote-type>20</remote-type>
<local-name>[Chapter (Chapter word count.tsv)]</local-name>
<parent-name>[Chapter word count.tsv]</parent-name>
<remote-alias>Chapter</remote-alias>
<ordinal>4</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Chapter word count.tsv_AB74A18031D74E66A6780E99B8BD6C60]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Words</remote-name>
<remote-type>20</remote-type>
<local-name>[Words]</local-name>
<parent-name>[Chapter word count.tsv]</parent-name>
<remote-alias>Words</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Chapter word count.tsv_AB74A18031D74E66A6780E99B8BD6C60]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Paragraphs</remote-name>
<remote-type>20</remote-type>
<local-name>[Paragraphs]</local-name>
<parent-name>[Chapter word count.tsv]</parent-name>
<remote-alias>Paragraphs</remote-alias>
<ordinal>6</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Chapter word count.tsv_AB74A18031D74E66A6780E99B8BD6C60]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Density' datatype='real' name='[Calculation_4972255496975044609]' role='measure' type='quantitative'>
<calculation class='tableau' formula='COUNT ([__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96])/ATTR([Words])' />
</column>
<column aggregation='CountD' datatype='string' name='[Category]' role='dimension' type='nominal' />
<column aggregation='CountD' datatype='integer' name='[Chapter]' role='dimension' type='ordinal' />
<_.fcp.ObjectModelTableType.true...column caption='Chapter word count.tsv' datatype='table' name='[__tableau_internal_object_id__].[Chapter word count.tsv_AB74A18031D74E66A6780E99B8BD6C60]' role='measure' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='Dvoinik_liminality_data.tsv' datatype='table' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"Canada"' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='Chapter word count.tsv' id='Chapter word count.tsv_AB74A18031D74E66A6780E99B8BD6C60'>
<properties context=''>
<relation connection='textscan.1gf8jim1lfvdhx176k0em0g1k4g6' name='Chapter word count.tsv' table='[Chapter word count#tsv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator='	'>
<column datatype='integer' name='Chapter' ordinal='0' />
<column datatype='integer' name='Words' ordinal='1' />
<column datatype='integer' name='Paragraphs' ordinal='2' />
</columns>
</relation>
</properties>
</object>
<object caption='Dvoinik_liminality_data.tsv' id='Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96'>
<properties context=''>
<relation connection='textscan.0io3ccc1n0ixge1dbqo2c12nr3a9' name='Dvoinik_liminality_data.tsv' table='[Dvoinik_liminality_data#tsv]' type='table'>
<columns character-set='windows-1252' header='yes' locale='en_US' separator='	'>
<column datatype='integer' name='Chapter' ordinal='0' />
<column datatype='string' name='Category' ordinal='1' />
<column datatype='string' name='Location' ordinal='2' />
<column datatype='string' name='Text' ordinal='3' />
</columns>
</relation>
</properties>
</object>
</objects>
<relationships>
<relationship>
<expression op='='>
<expression op='[Chapter]' />
<expression op='[Chapter (Chapter word count.tsv)]' />
</expression>
<first-end-point object-id='Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96' />
<second-end-point object-id='Chapter word count.tsv_AB74A18031D74E66A6780E99B8BD6C60' />
</relationship>
</relationships>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run>Liminality Density Treemap</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Dvoinik_liminality_data' name='federated.1tij4d61bds2lz1frksyf0hfptif' />
</datasources>
<datasource-dependencies datasource='federated.1tij4d61bds2lz1frksyf0hfptif'>
<column caption='Density' datatype='real' name='[Calculation_4972255496975044609]' role='measure' type='quantitative'>
<calculation class='tableau' formula='COUNT ([__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96])/ATTR([Words])' />
</column>
<column aggregation='CountD' datatype='integer' name='[Chapter]' role='dimension' type='ordinal' />
<_.fcp.ObjectModelTableType.false...column caption='Dvoinik_liminality_data.tsv' datatype='integer' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<column datatype='integer' name='[Words]' role='measure' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='Dvoinik_liminality_data.tsv' datatype='table' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<column-instance column='[Chapter]' derivation='None' name='[none:Chapter:ok]' pivot='key' type='ordinal' />
<column-instance column='[Calculation_4972255496975044609]' derivation='User' name='[usr:Calculation_4972255496975044609:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='on' />
</view>
<mark class='Automatic' />
<encodings>
<size column='[federated.1tij4d61bds2lz1frksyf0hfptif].[usr:Calculation_4972255496975044609:qk]' />
<color column='[federated.1tij4d61bds2lz1frksyf0hfptif].[usr:Calculation_4972255496975044609:qk]' />
<text column='[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Chapter:ok]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
<format attr='mark-labels-line-first' value='true' />
<format attr='mark-labels-line-last' value='true' />
<format attr='mark-labels-range-min' value='true' />
<format attr='mark-labels-range-max' value='true' />
<format attr='mark-labels-mode' value='all' />
<format attr='mark-labels-range-scope' value='pane' />
<format attr='mark-labels-range-field' value='' />
</style-rule>
</style>
</pane>
</panes>
<rows />
<cols />
</table>
<simple-id uuid='{E659AAFF-70C0-4CEA-9B58-302D600DA3A6}' />
</worksheet>
<worksheet name='Sheet 2'>
<layout-options>
<title>
<formatted-text>
<run fontname='Tableau Regular'>Liminality by Location</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Dvoinik_liminality_data' name='federated.1tij4d61bds2lz1frksyf0hfptif' />
</datasources>
<datasource-dependencies datasource='federated.1tij4d61bds2lz1frksyf0hfptif'>
<_.fcp.ObjectModelTableType.false...column caption='Dvoinik_liminality_data.tsv' datatype='integer' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<column datatype='string' name='[Location]' role='dimension' type='nominal' />
<_.fcp.ObjectModelTableType.true...column caption='Dvoinik_liminality_data.tsv' datatype='table' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<column-instance column='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' derivation='Count' name='[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]' pivot='key' type='quantitative' />
<column-instance column='[Location]' derivation='None' name='[none:Location:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<computed-sort column='[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Location:nk]' direction='DESC' using='[federated.1tij4d61bds2lz1frksyf0hfptif].[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]' />
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1tij4d61bds2lz1frksyf0hfptif].[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Location:nk]</rows>
<cols />
</table>
<simple-id uuid='{5230A31D-F805-41DF-9B74-F47A74570C4B}' />
</worksheet>
<worksheet name='Sheet 3'>
<layout-options>
<title>
<formatted-text>
<run fontname='Tableau Regular'>Frequency of Liminal Category</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Dvoinik_liminality_data' name='federated.1tij4d61bds2lz1frksyf0hfptif' />
</datasources>
<datasource-dependencies datasource='federated.1tij4d61bds2lz1frksyf0hfptif'>
<_.fcp.ObjectModelTableType.false...column caption='Dvoinik_liminality_data.tsv' datatype='integer' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<column aggregation='CountD' datatype='string' name='[Category]' role='dimension' type='nominal' />
<_.fcp.ObjectModelTableType.true...column caption='Dvoinik_liminality_data.tsv' datatype='table' name='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' role='measure' type='quantitative' />
<column-instance column='[__tableau_internal_object_id__].[Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96]' derivation='Count' name='[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]' pivot='key' type='quantitative' />
<column-instance column='[Category]' derivation='None' name='[none:Category:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<computed-sort column='[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Category:nk]' direction='DESC' using='[federated.1tij4d61bds2lz1frksyf0hfptif].[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]' />
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Category:nk]</rows>
<cols>[federated.1tij4d61bds2lz1frksyf0hfptif].[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]</cols>
</table>
<simple-id uuid='{2BDE8DE6-564B-4B41-A67D-E454179E3676}' />
</worksheet>
<worksheet name='Sheet 4'>
<layout-options>
<title>
<formatted-text>
<run fontname='Tableau Regular'>Liminal Categories by Location</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='Dvoinik_liminality_data' name='federated.1tij4d61bds2lz1frksyf0hfptif' />
</datasources>
<datasource-dependencies datasource='federated.1tij4d61bds2lz1frksyf0hfptif'>
<column aggregation='CountD' datatype='string' name='[Category]' role='dimension' type='nominal' />
<column datatype='string' name='[Location]' role='dimension' type='nominal' />
<column-instance column='[Category]' derivation='Count' name='[cnt:Category:qk]' pivot='key' type='quantitative' />
<column-instance column='[Category]' derivation='None' name='[none:Category:nk]' pivot='key' type='nominal' />
<column-instance column='[Location]' derivation='None' name='[none:Location:nk]' pivot='key' type='nominal' />
</datasource-dependencies>
<shelf-sorts>
<shelf-sort-v2 dimension-to-sort='[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Location:nk]' direction='DESC' is-on-innermost-dimension='true' measure-to-sort-by='[federated.1tij4d61bds2lz1frksyf0hfptif].[cnt:Category:qk]' shelf='columns' />
</shelf-sorts>
<aggregation value='true' />
</view>
<style />
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Category:nk]' />
</encodings>
</pane>
</panes>
<rows>[federated.1tij4d61bds2lz1frksyf0hfptif].[cnt:Category:qk]</rows>
<cols>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Location:nk]</cols>
</table>
<simple-id uuid='{FC33A14D-CC24-4D5F-A6C3-83EDB3995CC7}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.1tij4d61bds2lz1frksyf0hfptif].[usr:Calculation_4972255496975044609:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Chapter:ok]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{0A82AD77-AE2D-4880-B072-1778099E080E}' />
</window>
<window class='worksheet' name='Sheet 2'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.1tij4d61bds2lz1frksyf0hfptif].[__tableau_internal_object_id__].[cnt:Dvoinik_liminality_data.tsv_686928E3D3A04D7791C3CD3CF74D6E96:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Location:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{39A0B113-92A8-4B6D-8065-15BC63A1C361}' />
</window>
<window class='worksheet' name='Sheet 3'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Category:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{0CD347D9-1A84-49AC-BD46-A6E3BA84E865}' />
</window>
<window class='worksheet' maximized='true' name='Sheet 4'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='0' param='[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Category:nk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1tij4d61bds2lz1frksyf0hfptif].[ctd:Category:ok]</field>
<field>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Category:nk]</field>
<field>[federated.1tij4d61bds2lz1frksyf0hfptif].[none:Location:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{D73C2731-73FC-4580-902F-B612D04BACB6}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAALl0lEQVR4nO3d24+cB33G8d/s7Ml21kd248RJbMdOcA7QktAoJYKmLmkFJahSrxARLQWq
nqSqqvoHtOrhogeEQqkaCUSlVio9CkXItEDSFKJInJKQkNom6drE7Bp7d+1de33Y3dnpRdWL
NGkzrGd3WD+fz+WruXg0F/PVvO877zTa7Xa7AIjT1+sBAPSGAACEEgCAUAIAEEoAAEIJAEAo
AQAIJQAAofo7edGH/+BvanJqbrW3AOvcT997W+15y5568cxsr6fQgY4CMHF6tl4+dXa1twDr
3MzsfO1YWKiZi5d7PYUOOAUEEEoAAEIJAEAoAQAIJQAAoTq6C+j/MjjQrL5Go6qqFpda1Vr2
1wLAa1tuterS+XM1uGFj9Q8O9noOdQUBaDSqfu+X31PTs/NVVfWFrx6uZ46e6Now4OqxtLBQ
jz/y8WoODNb8zHTd/+FfrZHRsV7PirfiAGwb2Vjfn56rj/7t493cA1yFjj/zjRrbd0v9yLse
rInD366nP/fZescvfqTXs+Kt+BrA2PaR2jW2td779jfVgT3XdnMTcJVZbrWqvbxcVVU7b3lj
zZ6c7PEiqq7gG8Cxien61KNP1cbhwfq5d7y5nr3ue3XoqRe6uQ24Suy9+8fqsb/8eP3rw3/6
39cCznm0zA+DFQdgYalVL4yfrKqq45Mz9cEH7xUA4DX1Dw7VA7/+W7W4cLnOnfp+PfeFz/d6
EnUFAbj3jj1114Eb6+h3T9U9d+ypx79+tJu7gKvI0sJCPXvo0do8Olb/8cRj9bb3/0KvJ1FX
EICnnhuvyem52jW6tf760Nfq2OR0N3cBV5Fmf3/tvOWNdX56qu7/0K/U5jHXDX8YrDgA7aoa
n5iu8Qkf/MD/r9HXV7tuv7PXM/hf/BIYIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAAChBAAg
lAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAIJQAA
oQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBAKAEA
CCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQAgAQSgAAQgkA
QCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIAEEoA
AEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAAChBAAglAAAhBIAgFAC
ABBKAABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQS
AIBQAgAQSgAAQgkAQCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCU
AACEEgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAACh
BAAglAAAhOrv9QDg6nJw96665/qxXs+gAwIAdNVXTkzWkZnZXs+gA04BAYQSAIBQAgAQSgAA
QgkAQCgBAAglAMCaaLfbNX3i5ZqbOv2KY6ePH6v5s2d6uCyXAACrrrW0VE98+pP16J/8UR1/
5ptVVbV4+VJ98ZFP1KN//Ic1efRIjxdm8kMwYNU1Go264+A764Y77qyL5+b+52jd9bPvrZ37
bunptmS+AQCrrq/ZrNHde15xbGBoqHbccGNvBlFVAgAQSwAAQrkGAKy6+bNn6om/+lRdmD1b
rcXFmjp+rO48+EB97bP/VOenp6qv2ayJI4frvvc9VM1+H0trxTsNrLpNW7fVu3/zt191/LWO
sXY6CsDw0EBtGBpY7S3AOjcw0Oz1BH4AjXa73X69Fz05frIuLrbWYg+wjl2/ZWM9PzPt/wDW
iY6+AXz035+r781eWO0twDr34O031f5dI72eQYfcBQQQSgAAQgkAQCgBAAglAAChBAAg1BUF
oNlo1D03jdaW4cFu7QFgjaw4AFuGB+t3fvLN9b637K+xa4a7uQmANbDiAFxcXKo/f/KFenL8
ZDf3ALBGVvwwuIXWci20lru5BYA15CIwQCgBAAi14lNA+3ZsrvfcflNtHh6om3eM1PjM+fr7
Z/+zm9sAWEUrDsBL03P1sS8/380tAKwhp4AAQgkAQCgBAAglAAChBAAglAAAhBIAgFACABBK
AABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQ
AgAQSgAAQgkAQCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCUAACE
EgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAAChBAAg
lAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAIJQAA
oQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBAKAEA
CCUAAKEEACBUf68HAFeXgWazhpvNXs+gAwIAdNXdO99Qt27f3OsZdEAAgK76xslT9eKZ2V7P
oAOuAQCEEgCAUAIAEEoAAEIJAEAoAQAI1Wi32+3Xe9HjL07UhYWltdgDrGM3bt1UL50/+5q3
gbbb7Rp/5ps1sv0NNbp7d1VVTb383frWl75YO/fvr9vue3s1Go21nhyto98BfOb58Zo8d2G1
twDr3AP7d9WuHUOvOt5aXKzPPfyxmj19qt508KdqdPfuunjuXP3LI39R7/ylj9TTnz9Ufc1m
Hfjx+3qwOldHATh3ebHmLi+u9hZgnbu4uFRVrw5Ao9msgx/8UE0cPVIX5+aqqmriO0dq311v
rWv33lw/8dAH6tAnHhaANeYaALDq+vr66ppt215x7NzUdG3beV1VVW0YGanFy5ergzPSdJEA
AD0xdM2munT+fFVVtVqtavT1uQawxgQA6ImdN++v73z9q9VeXq7DT365bjhwW68nxfEwOGDV
nT9zph779Cdr8dKlWm616tTxY3X/Qx+ofXe/tf7u93+3Noxsrnf92m/0emacjm4Dff9n/q0m
3AUEvI5333pD7d+5qeOngbbb7WovLzv90yNXdApoqL9Zo5uGa7jfnz8AP7hGo1F9zaYP/x5Z
8SmgvduuqZ+/c2+dnr9U149srH/+9rE6POUZ4ADrxYoDcGL2Qv3ZV56r5XbVvu0j9bbd1woA
wDqy4gAsLi/XgdEttXfbSN26Y0v94wvHujgLgNV2RXcBHZ2aq6n5S7VleLB+9LrtdWJ2vlu7
AFhlK74IvH3DUDUbjZq6cLm+9NJE7fcn0ADryoq/Ady4dVP9zP5ddWGxVcMDzfqH58e7uQuA
VbbiADw7OVPfmpypwWZfLbSWyxM8ANaXK7oG0K6qy63lLk0BYC15FhBAKAEACCUAAKEEACCU
AACEEgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAACh
BAAglAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAI
JQAAoQQAIJQAAIQSAIBQAgAQSgAAQgkAQCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBA
KAEACCUAAKEEACCUAACEEgCAUAIAEEoAAEIJAEAoAQAIJQAAoQQAIJQAAIQSAIBQAgAQSgAA
QgkAQCgBAAglAAChBAAglAAAhBIAgFACABBKAABCCQBAKAEACCUAAKEEACCUAACEEgCAUAIA
EEoAAEIJAEAoAQAIJQAAoQQAIFSj3W63X+9FT09M16Wl1lrsAdaxsU3DtWmoWfOLS72eQgf+
CyDF7MirhSdMAAAAAElFTkSuQmCC
</thumbnail>
<thumbnail height='384' name='Sheet 2' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdd3hU1534//d0jUajUe8FdYSQBAIEBiyKsTGY4BIbl9jerGuCySbZbLz5
ehOy3l0n3t86m8RxjElixzHBuOKCwQaD6UUSCElISEINgXqXZjR95v7+YOeGsejVjs7refw8
ZnTLuXfm3s/pRyFJkoQgCIIwpigUCoXyeidCEARBuD5EABAEQRijRAAQBEEYo0QAEARBGKNE
ABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEY
o0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAE
QRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QA
EARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRij
RAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARBGKNEABAEQRijRAAQBEEYo0QAEARB
GKNEABAEQRijRAAQBEEYo0QAEARBGKPUl7KTJEl4PJ4rnRZBEAThGrqkADA4OEhjY+OVTosg
CGNIR/8Idqf7eidjTLukAKDVagkNDb3SaREEYQz51QflVDV3X+9kjGmXFAAMBgNpaWlXOi2C
IIwhAQH7r3cSxjzRCCwIgjBGiQAgCIIwRokAIAiCMEaJACAIgjBGiQAgCIIwRokAIAiCMEZd
UjfQa2lgYACLxUJQUNA1HXsgSRJ2u5329nbMZjOBgYEkJSUREBBwzdIgjOb1ehkeHmZoaAij
0UhISAhK5bXPxzgcDjo7O9HpdISFhaHVaq95GgThcl3zAGC1WqmpqaG2tpb+/n4SExMZP348
qampZ3yI1q1bx549eygqKuI73/nONUvn0aNHeeWVV+jo6MDlchEZGckzzzxDfHw8L774IgqF
glmzZnHDDTcAYLPZeOWVV3C73fLnCoXijMceGhqisbGRgIAAUlNTx1xQqa+vZ8uWLXi9XubN
m8fEiRMveF+Xy8Wnn37K+vXrufXWW3nggQfQ6/Xn3c/tdvPmm2/S0dHB9OnTmTt37mVcAZw4
cYJnnnmGrKwsHnnkEVJTUy/reIJwLoEBWrKSopidn4bN4aS2pZuyupNY7c4zbq9QQE5qHJEh
BnYcqkc6y3GvWQBwu93U1NTwm9/8hvr6etxu9/8lVIFKpWLOnDn84Ac/ICwszO/F2d3dTXNz
M9nZ2dcqqXR1dfEf//EfNDc3o9VqMRgMOBwOvF4vLpeL999/H6VSSVhYmBwAnE4nH374IQ6H
w+/zMyktLeUXv/gFiYmJrFy5cswNqmtra+OTTz7B7XaTlpZ2UQFAkiQGBgZobm6mt7cXSTrb
T9tfS0sLmzZtorW1lbCwsMsOAA6Hg+bmZoxGIw6H47KOJQhno1BAckw4T945ixkTxyFJpz5T
KhXsLm/kV2u3MWC2ydtrNWpS48K5/5YpzCnIYGjExs7DDUjeMz8n1yQAeDwe9u/fz29/+1uO
Hz9OREQE8fHxmEwmenp6aG1t5dNPP6Wzs5P//M//JCYm5lok66z27dtHR0cHoaGhfP/732fu
3LkEBgYCp0owEydORKVS+aVTrVYzYcIEPB7PedPv8XiwWq3Y7Xa8Xu9VvZavouDgYMaPH4/H
4yEiIuKanLOuro6BgQF0Oh0zZsy4JucUhMuVGBXKvz60gJT4cNZ8Wsq728oIDNByQ24KwYYA
Tn+vj4sN4+75k1k4Ixu3x4tKpUSnUXPmeohTrkkA6O3t5dNPP+X48eMkJCTw5JNPMn/+fLRa
LX19fXz44Ye8/fbbVFdX8+GHH/L444+jUqku6NiSJOF2u+WSxNmqXS5GZ2cnHo+H+Ph45s2b
51fFEBgYyJ/+9KdR+xgMBlatWnXZ574UvnvgdrvRarUolcrz3gdJknC5XDidTgICAlCrz/5T
kCQJm82G0+nEYDCgVqsv6z4XFBRQUFBw3vQ5nU48Hg86ne6c1+Tb1u12o9PpRl2L1+ulvr4e
s9nMvHnzyMnJGXUMX+lOrVZf8G/vy9xuN3a7Ha1We842Aa/Xy8jICB6Ph+Dg4CvehuHxePB4
PKjV6nMe2+v1YrVa8Xq9GAyGC/rdCNeOWqVkZn4qaQkR/PGjfWzYfQS7043Z6uDDnZWjtn/k
GzcwZXwieyub+HT/Ub45N5+c1Nhzn+NqJd7H4/Fw9OhRDh06hEaj4cEHH+Tmm2+WH9KIiAju
v/9+2tvb2bhxI3v27OGWW245b53qyMgIxcXFNDc3MzIygkqlIjg4mNTUVPLz8wkKCgLg2LFj
VFVVodfrWbRokd8xDh06RFNTE/Hx8cycOZO6ujoqKiqorKzE4/Fgs9n46KOPANDr9RQVFWE0
Gvn888+x2+3k5+fL6XS5XHzxxReMjIyQn59/0dU6bW1tlJaWIkkSs2fPJjIy0u/vDQ0NHDx4
kJiYGAoKCggODqa7u5sjR45w8uRJLBYLDocDg8FAYmKinFafo0ePcvToUUwmE3l5eRw+fJim
pibMZjNGo5HCwkIKCgr8Xhher5fW1lb27t1Le3s7VquV0NBQ0tLSmDNnDoGBgUiSRHFxMS0t
LURGRjJ//vxR1/bZZ59hNpvJysoiLy+PoaEhdu7cidfr5cYbbyQ8PFzeVpIk6uvrKSsro6ur
C5fLRXBwMJmZmdx4442jjt3a2kpVVRUnT57E6XQSFhbGzJkzyczMlF/kQ0NDnDhxAp1Ox7Jl
y/yusaOjg8OHD9Pa2orVakWn0xEREUF6ejoTJkxAp9Od97sbHBxk165d1NbWMjAwgMFgIDc3
lylTpsi/Qzj1G6mrq6OsrIz29nbcbjcxMTHk5ORQUFAgn0uSJI4fP05xcTEJCQlMnjwZg8Eg
H6OmpoajR4+SlZVFTk4OWq0Wj8dDW1sbhw8fpqOjA4fDQUBAAFFRUWRnZ5OSkiIf3+v10tjY
yIEDB2hvb5dLYpMnT2bq1KkiCHxFGPQ67ijKo7qpgx2H6s87c2rp0Ra2HayjrPYkZquD22aO
zuh82VUPAE6nk6amJvr6+sjNzaWwsHBUDstgMHDHHXewefNment7qaurO2cAsNvtvP7662ze
vJnu7m65PUGn0xEdHc33v/995syZA0BlZSWvv/46ISEhowLAnj172LBhA0VFRcycOZPKykpe
eeUVrFYrbrebpqYmXn75ZeBUoMrOziYgIIA333yToaEhnnjiCTmdTqeTt99+m66uLp588smL
DgAOh4N169YxPDyMTqdj8eLFfn/fuHEj77//PvPnzyc/Px+A1157jb1799Lb24vL5QKQ2yZq
a2tZvny5XHo5fPgwf/nLX9DpdKSnp1NbW0tfXx9erxeFQsHhw4f53ve+R15ennzOmpoaXn75
ZY4cOYLVagVOtdlERkbS0NDA/fffT3h4ODU1Nbz11luEhYUxffp0+WUFYLFYePnll5EkiUce
eYS8vDx6e3tZs2YNLpeL9PR0vwCwY8cO3njjDRobG+VzqlQq4uLimDZtmt9v59ChQzQ2NtLY
2MjQ0BAAGo2GkpIS/uu//ksOoq2trXR3d1NUVERGRoa8f0tLC2vWrGHPnj309/fL98JgMBAf
H88vfvELkpOTz/m9tba28tprr9Hb2yu/TJVKJUlJSSxfvpw5c+agUqlwOp3s3r2bNWvWUF9f
L7cbqNVqkpOTueuuu1i8eDFGoxFJkqitreXll19m9uzZpKamyvfU6XRSXFzMmjVrWLZsGenp
6Wg0Go4fP85LL71EVVUVQ0ND8rUEBwdTWFjIo48+Snp6unzfVq9eTW1tLXa7Xb7H6enpPPTQ
QyxcuFAEga+A6DAjcREmNu6tonfQct7tNx+owem+uHVarnoAcDgcdHV1ATB+/HiCg4PP+OPK
zs7GaDRit9vp7j73FLFlZWV8+umn9Pf3M3fuXKZOnSrnHLdv3+63v9vtxmq1nrFI7nQ6sVqt
8sOYkZHBXXfdRWlpKbW1tcTExHDTTTcBEBQUREhICJIkYbVasVqt8ksX/lZN8uXPL1RiYiKR
kZG0tLRQWlrKokWL5PskSRI7duxAkiQSEhIIDg4GTr2gtVotd999N0lJSahUKnbv3s2BAwfY
smULeXl53HzzzX73ob+/H4vFQk5ODosWLaKrq4svvviCuro6iouL5QDgcrlYtWoVJSUlxMTE
cP/99xMXF8fhw4f57LPP+OijjwgLC+OBBx4gJycHtVpNZ2cn1dXVFBYWytdVWVlJd3c3SUlJ
ZGZmAn9rA3G5XHLwhlOltT/84Q80NDSQlJTEokWLCAkJoampiR07duDxePwCQHNzMwaDgRkz
ZhAfH8+xY8coKyvj8OHD1NbWygFAp9Mxa9Ys5s6dK/e48nq97N27l82bNyNJEvfddx8ZGRkM
DQ1RXl5OWVkZNtvfGtfOpr+/n5GREbKysigqKsJqtbJt2zZaWlooKytjypQpclvXH/7wB5qa
mhg/fjwLFy4kKCiILVu2UFJSwrp164iPj2fWrFl+39eZ2olcLpd8/3zVf5999hn79u0jOjqa
RYsWkZGRQV9fHwcPHqSjowOz2Qyceh5///vfU1NTw6RJk1i2bBkGg4H333+fXbt28e6775Kd
nX3ewCdcffGRJqwOJ8c7+gk1BZIWH0FCVCjtPUMcaWwf1QPoYl/+cI0CQE9PDwCRkZFnLVJr
NBqioqI4duwYvb295zxmY2MjZrOZmJgYnn76afmF6PF4ePLJJy+5V0Zubi4TJkzA5XJRX19P
UlKS3PXU18bgyzFdaRqNhrlz51JSUkJjYyNtbW0kJCQApxow29raSExMJD8/X34Jrly5kujo
aLneH2DOnDk8+uij9PT0UF1dLQcAn9TUVH75y18SFxeHSqXC6/XS3t7O0aNH5UANsG3bNioq
KoiKiuKHP/whN954I0qlkltvvZXg4GDefPNNduzYQWFhIXl5ecTExFBTU8O+ffuYNm0aCoXC
L3CdHgDOxO12s27dOpqbm0lLS+O///u/iYuLQ6FQ4PF4eOKJJzAYDH7B9YYbbuBf/uVfiIqK
QqlU0tTUxAsvvEB5eTmtra3ydmlpaYwbN86v7cJms9Ha2orNZuO2227jsccew2AwIEkSd999
N+3t7cTGnrv+FCA5OZnly5czY8YMNBoNNpuNwMBA1q5dS19fHzabDZPJxIcffkhTUxO5ubn8
4Ac/IDs7G6VSyfTp0/nVr37Fzp072bZtG+PHjycsLOy85z2dx+OhpqYGgAULFvDoo48SEBCA
1+vlnnvuYXh4WO7EsHnzZo4dO0ZiYiIrVqyQ20NycnL45je/SWNjI7t27eLBBx8UpYDrLCEq
lJAgPSvumYMpSI9Oc+q5V6mUnOgc4OX3dnGg+jjes/TwuRBXfQSNL4cCp15y52qU0ul0cmPc
uYSHh6PRaBgYGGDTpk00NjbS29uL1+slLCyMuLi4S0qrSqVCq9XKjclKpVJu0Dtf2q+EoqIi
AgIC6OnpoaqqSv58x44dACQkJDBhwgT589TUVCRJorOzk+bmZo4dO0ZnZyfJycm4XC4GBgZG
ncNoNJKWloZer0er1RIQEEBKSgqSJPl1qayqqsLtdss5W41Gg0qlQqfTcd9992EwGOjq6qKt
rY2AgABmzZqF1+vlyJEjDA8PA6fqxsvLy9HpdMycORONRnPWa+/p6aGlpQW32829995LcnIy
Go0GtVqNTqcjJCRkVNVhfHw8ERERBAQEoNVqiY6OJiQkBMDvWnzf6+mNnBqNhuDgYFQqFRUV
FRw4cICWlhYGBwdRKpWkpKRc0PgCk8lEXFwcBoMBrVZLYGCgnHs+/Z6WlZWh1WopLCwkJydH
vp/R0dEsXrwYrVbrV5V1MXzVch6Ph8rKSvbv309LSwtmsxmdTkdsbCwmkwmAI0eO4PF4CA8P
JzExEZvNhs1mQ6lUkpeXh8VioaWlZUz2TvuqCQ3Wo1apcLk9bNh9hJV/2Mj3fvUef/20lKjQ
IFYsm0NOyvkzKedy1UsAGo1GHsE7ODiIy+U6aymgp6cHnU533hG/BQUFTJ48mT179vDiiy8S
GRlJVlYWEydOZNKkSeTl5Z2zV8tXVVRUFLm5uZSVlVFbW8tNN92Ex+OhpKQEnU5Hfn6+X/16
fX09mzZtory8nN7eXiwWC16vF6fzVNHwch7i9vZ2FAqFnHM+XVBQELGxsXR3dzM4OAjA7Nmz
+fOf/0xvby81NTXMmDGDiooKecTutGnTznm+3t5euc7/YsYFXCqtVktBQQEHDx6kqqqKn/3s
ZyQlJTF+/Hjy8vKYPHnyGa/9UrW2tmIwGIiJifELZL42m/DwcLnEcLHUajXz58+nsrKSyspK
jh49SmJiIjk5OUyePJlJkyYRHx+PUqmks7MTSZIYHBzkzTff9DuO77u0WCyMjIzIJWvh+ugf
ttI9YOY3b23nYM0J+fPa4510D5j54f3zmTYhiaPNHXgusRRw1d+Svl4VcGr0pNVq9esZ4eN7
meh0Or9GwTOJiYlh+fLlZGVlUVdXR3NzMwcOHGDXrl2kpaXx1FNPUVRUdFWu52q76aabKC4u
pqmpia6uLgYHB+no6CAwMNCv/3p7ezu///3vKS4uJjU1lYKCAqKjo9Hr9ezbt4/KytHdxC6G
r375TF0ifdVhXq9XDjKpqamMGzeOlpYWuR2gvLwci8Ui19Gfi9frlXPLl9oN82JNmjSJ5cuX
s3//fmpqamhubmbz5s188cUXTJo0iX/6p38iMzPzilSFuFyus5YifaVNp9N5wQPbTqdSqZg2
bRo//OEPKSkpoaGhgebmZjZs2MDWrVuZN28eDz/8MGlpabjdbiRJor29nc8//3zUsRITEzGZ
TH5tM8L10d4zhEqlxBDg337p9ngpP9bKyc5+YsKDMeh1DI9cWtX0NQkAiYmJaDQaubtdZGTk
qIdq69at2O12YmJiLqgBKiUlhX/4h3+gu7ub7u5ujh8/zoYNG6iurmbt2rXMnj37uswRc7kK
CgowmUycPHmS48eP09DQwMjICNnZ2XIvDoBdu3ZRXl5Oeno6Tz/9tFzM12g0DA8PX3YAiImJ
QaFQ0N7ejiRJft+Xw+Ggu7sbg8Eg5xLVajVz5sxh9erV1NfX09jYSENDAw6Hg3nz5p33uwgP
D5frqRsbG6/J1Aq+UkB2djadnZ10dXVRU1PDxo0bKSkpYfv27aSlpV2RUkBcXBwnTpygr6/P
735KkoTFYmFwcJDY2NhLnhbEVw03adIk+Zk4cuQIb7/9Ntu3byc7O5vU1FS5vSQlJYWnnnrq
jNdmMpnOmEkTrq227kGCDQFkp8Sw63CD33QObo+XEYcTpULB5eRPrvobUq1WM378eLKzsxkc
HOSNN94YVc955MgRNmzYgCRJclXOufj6vavVauLj45k8eTJLlixhyZIlBAYG0tHRwcjIiN8+
w8PDfm0LvraGS8lxXU2hoaFMnjyZjo4OampqKC8vx2azMXv2bL+eTCdOnMDpdMrVRpGRkWi1
WvmFcrnS0tJQKBTU19dTV1fn97ddu3YxODhIaGio33iFoqIiVCoVJ0+eZOvWrXR0dKDX6885
LYZPZGQkERERKBQKPvjggytyDefidDrp6urCYrGg1+tJSUlh+vTpLFu2jJkzZ6JQKDh+/PgV
qwvPzMzEZrNRXV1NR0eH/LlvPMvIyIjclnA6X08gnzO1kXk8HpqamvB4PAQFBZGamsqMGTO4
5557mD59OlarlZ6eHpxOJ8nJySgUCmw2G0FBQUyZMsXvv5ycHEJDQ8/ZXiNcG519wzSc7GFS
ZgIJ0f7V4kF6HfERIfQNjTBiO/N8QBfiqpcAFAoF6enpzJs3j6amJvbt28ePfvQj7rjjDiIj
I6mtreWTTz6hpaWFiIgIli1bdt5c0EcffcQXX3zBXXfdRWFhIWFhYXR3d7Nz506sViupqaly
DiYoKEgecfzSSy8xdepUeXBTRUXFV66oGxgYyKxZs9i5cycbN27EbDajVCpH9eaJiIhArVZT
XV3N1q1bycrKoqWlhfXr11NaWnrZ6Vi8eDHvv/8+x48f53//93955JFHSEhIoKSkhJdeegmt
VsvUqVP95miKiYkhPz+fmpoaNm3aRH9/P7NmzZIbIM/F15316NGjlJWV8ZOf/IRly5YRFhZG
U1MTGzdu5Pnnn7+ghtkLMTQ0xOrVq2lubub2229n8uTJ6PV6qqqqqKioQJIkEhMTr1hPmLvv
vptdu3axd+9e9Ho99913H0ajkQ8++ID33nsPo9HI3LlziY6ORqFQEBoaikKhoKamhvXr1zNj
xgza29vZsWPHqNKdw+Hg2WefxWAwcPvttzNhwgQCAgKorq6mpKSEgIAAwsPD0Wq1LF26lPXr
19PS0sILL7zAvffeS05OjhycPv74YzIzM/nxj3/8tWxH+3titjlY+9lBfvroQv7htkL+/Ekx
vYMWggMDuPfmAiQkjjZ34vZ4USoUBOg0ftM+aFRKlAolgQE6OSPj9nhxut348r3X5BvWaDQs
XboUu93ORx99xJEjR6ioqJD/rlarSUxMZPny5UyZMuW8xzOZTHg8Hl588UW5ntp3geHh4Xzr
W9+SH9ysrCySk5Pp7+9n7dq1rF27FrVaLfcecTgcX6nubhqNhqysLOLi4uSujAUFBURFRflt
N3PmTLZt20ZdXR3/7//9PxQKBWq1Wu4J093dfcbrutDPgoODeeqpp/jtb39LeXk5K1askP8W
EBDAzJkzueOOO/xKJQEBAcyePZtDhw5htVpRKpUXVP3jS0NhYSHf+ta3WLduHaWlpRw4cED+
e0hICB6PZ9Q+F3ItZ6JSqTAajZw4cYLnnnsOSZLQarU4nU60Wi3jx49n/vz5F/QSvJBzpqSk
8O1vf5s333yTzz77jE8//VT+W0hICIsXL2bGjBmoVCokSSI5OZn09HQaGxt55513eOedd1Cp
VERERBAcHOzXVVqpVBISEkJFRQWlpaVym4Jvaozp06fLI3wjIiJYvnw5f/zjH6mtreWnP/2p
33HCwsL8xnEI14/XK1FcfZz12yu4bdZExifHUFHfSm5aPPFRJt7ZWsaBquMAxEWa+OcH5qNW
/e1ZG58cTWSokV8sXyK/8A/XtfLhzgp5ArlrFuJNJhMPP/wwCQkJHDx4kO7ubux2O0ajkZiY
GBYsWMCkSZNG7Tdp0iTUarXfCNXbbruNmJgY9u/fz8DAAHa7HZVKRXh4OLNmzWLevHnytr7R
jZGRkfT29qLRaIiLi2PmzJn09/dTXV09am6Y7OxsFi1aREpKyqj0qNVq5s6di81mIykpye/z
oqIihoaGztuGERcXx2233UZ4eLjfdA0+0dHR3HbbbXJX0DONzBw/fjzf/e53+fjjjxkeHkav
18tTQPT09FBaWup3zzIyMli8ePEZu8jm5+cjSdKo+3/jjTcSFBTEpk2b6O7uxuFwyN1I77nn
nlFBSaPRUFhYSFFREW63G71eT35+/qi0BwcHs2DBAtxut1+fd4VCwf33309SUhK7d++mr68P
t9uNwWBgwoQJGI1GlEol2dnZLFmyhNzcXL8XtE6nY+rUqRgMhjN+d6cLCQnh7rvvJiEhgaqq
KgYGBnA4HPJ9XLBgAenp6Wd9uYeFhbFkyRKSkpL8SjhKpZLk5GSWLFlCTk6OXGLR6/Xcdddd
REVFsXv3bnp6euQpGCZNmsTChQvlLqwKhYLo6GieeuopPvvsM/r6+lAqlfLv1ul0sn//fnka
CK1Wy/e+9z327dtHXV2dXN2p1+tJTU3llltu8RuDsXDhQmJjY/niiy/k79XXW883HYTI/X81
DJitvPrRPlo6+pmeM47MpGi6B4ZZv6Ocz4trcbhO1WB4PF6GR+yoTstsFVe3jDreiN3pN25A
IV2HSnC3201PT488t4zJZLqknh8ul4uhoSFGRkbkH3BAQMAZH9rh4WH6+/vlbqZf5Tn4vV4v
FotF7hZpMpnOeF2SJDE8PMzg4CAGg4HQ0NAr3oPGN9Fab28vdrudkJAQQkNDz5qrd7lcDA4O
ypORhYSEXNLLxOPxYDabcblcBAUFnfV7vRLsdjtDQ0PYbDYMBgMmk+mqLfDiGzHe09OD2+0m
KiqKoKCgM16b73cwODiISqUiKirqnHXzXq9XvhaHwyGPXj/b/fdNSuebwM4XYK+Vf/zPv/p1
bxTOLUivI8wUyKDZdsm9fk5Xte7fFNclAAiCIIgAcH1Vrfs3xdevn6QgCIJwRYgAIAiCMEaJ
ACAIgjBGiQAgCIIwRokAIAiCMEaJACAIgjBGidEegiBcF0qdFqX+qzseZywQAUAQhOtCoVSi
UIlKiOtJ3H1BEIQxSgQAQRCEMUoEAEEQhDFKBABBEIQxSgQAQRCEMUoEAEEQhDFKBABBEIQx
6u9qHIDH42F4eBgAo9F4zVY18nq9DA4OolAoMBgM8mIiVqsVm80mL7YhCILwVXJdAoDNZqOr
q0teji4oKIioqChiY2Mva0Winp4e1qxZg9fr5YEHHiAxMRGAtrY2ysvLUSgU5Obmyp9fKRaL
hZdffpmAgADuuOMO0tPTAThw4AC7du0iIyODb33rW+c8RkdHB+Xl5Xg8HnJzc8+7rOS5OJ1O
NmzYQEBAALm5uX5LVwqC8PWhVauIDQ/2W+vXx+pw0TNowe3x+n2uUauIDTOSFB1CuDEQs81J
W+8QzZ39OF3+62pf0wDgdrvZvXs3n3zyCQMDA5jNZnnhaqPRyMSJE1myZAlpaWmXdPyhoSG2
b9+Ox+Ph1ltvlV/0jY2NvPbaawAsX778igcAh8PB1q1bMRqNzJ49Ww4ADQ0NbNmyBYvFct4A
0NTUxJ///GecTifLly+/rABw/PhxVq1aRXh4OI8//viYDAAdHR3U1dURERFBdiea7KgAACAA
SURBVHb2FV8q81qxWCzU19czPDwsr3csjB1xEcH8631zCQoYvURpXWsvf9l8kJM9Q/JnQXot
t83I5pYpGUSYDATqtDjdbgYtNj4/1MC7OysZsTvl7a9ZABgYGGDdunVs2rSJrq4uJElCpVKh
UChwu08tbNzQ0EBERMQlB4CzcbvdmM3ma7re6cXyeDxYLBacTieXu0pnWVkZg4ODREVFER0d
fYVS+PVSXl7Ob37zG6ZNm8bTTz9NcHDw9U7SJenq6mLNmjVUV1fz61//mgkTJlzvJAnXUGRI
EBOSo9l/tIWGtj6/v3UNmBmxu+R/B2jVPLSggLvn5FHd3Mk7Oypp6RogKjSIWRPHERliQKdR
cfpywtckADidTj7++GPefvttHA4HEydO5IknniArK4uAgAD6+vo4cOAAGzduPOsxJEmSA4Va
rb6oBcLnzp3L7Nmz5X3Pdnyv91RRSqlUnvf4kiQhSdIVW6h89uzZfPjhh+dM4+nn9Xq9KJXK
UUFNkiSKi4vR6XQUFhae8YXx5bRfzDVc7H3y7ePxeM6Y3itx/DNxOBz09fUxPDyMx+M57/Zf
vq8KhUI+ty/9CoXinGnybSdJ0gX/Rs/3fbrdboaGhujr68PpdJ7lKMLfI5VSSVJkCH1DI3y0
t5rimpN+f5eQOD2vOD4xinvn5/NZSR1/+KSYAbMNCag92cOequMoAI/XP3N51QOAJEkcO3aM
bdu2MTIywpw5c3jmmWcIDw+XtwkMDCQxMZGlS5ditVpH7d/W1kZbWxsdHR0AxMbGkpCQQFxc
3AU9ZE6nk+bmZgCSk5MJDAwETuW6+/v76e7uxmKxYDabUSgUhIaGEhsbS0xMzKjju91uTpw4
QX9/P1arlYCAAL+X1oWw2Ww0NjaiUCiIiooiMjISp9PJ8ePH8Xq9jBs3Tk5jb28vXV1daDQa
4uPjaW9vp7Ozk6GhIYKDg0lNTSUuLk5+cQwODlJfX09sbCy33XabX9WHw+Hg5MmTDAwMMDIy
gkajwWAwEB4eTnR0tNx4/WUul4v+/n76+vqwWCwMDQ2hVCqJiIggJiaGiIgI+Txer5fe3l46
OzsJDQ1Fo9HQ2tpKT08Per2e2NhYEhMT0ev18r11Op3y8UdGRhgcHEStVhMREUFsbCxhYWHy
8W02G21tbdjtdlJSUggMDKSjo4Pu7m4CAwMxGo0MDg7S2toKwPDwMEePHpUb4SMiIoiLi2Nk
ZIT29nYcDgfx8fH09fXR0dHB8PAwJpOJlJQUoqKi6O3tpa2tjZ6eHtRqNXFxcaSlpaHT6fwC
hG+7EydO4HK5SEhIICkpiaioKL9709PTQ1dXF+Hh4RgMBtrb2+nq6sJmsxEWFkZKSgqRkZF4
PB5OnjxJQ0OD/Ew0NDTI33NgYCBxcXHy70T4+6NSKUiMMjFkddA7ZMV7jpoBhQK+tWAS7b3D
vLfrCP1mm9/fvd4z73vVA4Db7aampoba2loiIyO5//77CQ0NPeO2Op0OnU4n/1uSJMrKyliz
Zg2lpaU4HA55u2nTpvHwww9TUFBw3jS0t7fz7LPPolQqWblyJePHjwfg5MmTrFmzhgMHDtDb
2yvnFI1GI9OmTeOxxx4jMzNTPo7NZmPbtm289957NDU1YbVa0Wq1xMbGYrfbMZlMF3Q/tmzZ
wurVq4mKiuK73/0ukZGRdHR08Nxzz2G323n22WflnPuuXbt444030Ov1zJ07l127dtHU1ITL
daroN3fuXFasWMG4ceMAqKmpweFwcMstt8htEXDqJbtp0ybef/99mpqa5Nyk0WgkLy+Pxx57
jNzc3DOmubm5mTVr1lBeXk53d7ecGw4JCWHGjBk89NBDpKeno1QqcbvdbN++nT/96U9kZWVh
MBgoLi7GYrGgUqlITEzkzjvv5I477iAwMBCFQkFdXR3r1q2joqKCnp4evF6vHIhnz57Nww8/
TFJSEkqlkra2Nn7zm99w/PhxfvnLX6JUKnnttdcoKysjLy+PiRMnsnXrVjmzUFNTw89+9jP5
JXzHHXfw1FNP0dLSwosvvsiJEyeYM2cOVVVV1NXV4fV60Wq13HDDDdxwww0UFxdTWlqKxWIB
ICkpiaeeeop58+ahUCjwer00NDTw9ttvs337drkXml6vZ+bMmTz44INkZ2ejVqtxuVxs3ryZ
NWvWkJeXR0xMDHv37qWtrQ1JkggICGD+/Pn84Ac/wOv1snr1akpLS+UA8Nvf/paAgFPTJ2dm
ZrJixQqys7PP+5sTvp5USiUJESaGR+z0m63n3Nao1zEtK5HNpcdoau+/4HNc9QBgt9tpb2/H
6/WSn59PcnLyBdfF+xozKysrSUxMZMqUKQAcPHiQvXv3YjabefbZZ0lISDjncVwul9xN8/Ri
9IkTJ9i1axexsbEUFBRgNBoZHh6mtLSUHTt2oNFo+OlPf4perwdg586dvPTSSwwMDJCYmEhW
VhYqlYqTJ0+e7dR+fNUzb7zxBmazmWXLlpGXlwecCgyDg4PYbDa/NDocDgYGBmhtbaW9vZ24
uDhmzZqF2WymsrKSkpIStm/fzj/+4z/K20+dOpW77rrLr/RSU1PDq6++Sn9/Pzk5OaSmpuL1
emlvb6eqqoqmpqazBoCTJ0+yf/9+YmNjyc/PJzQ0lJ6eHsrKyti8eTPBwcE88cQTmEwmJEnC
brczMDDAgQMHiI2NZdasWajVampra+XG7uTkZGbNmgWcagAvKSkhISGBgoICQkJC6Ozs5PDh
w2zcuJHQ0FAeffRRAgMDcbvdDA8PMzAwQFNTE1u2bKG4uBiVSoVOpyM8PJycnBzgVOO/yWRi
woQJaDQaALkDgK/LcHd3N+vXryctLY2ioiIGBgaoq6tj9+7dlJSUEBwcTG5uLmq1mpqaGk6c
OMEHH3xAUVERSqWS7u5u1q1bx+bNm0lISGDZsmVIkkRJSQk7d+7E4/Hwb//2b4SGhiJJEjab
jYGBAfbs2YNarSYrK4uMjAw6OztpbGxky5YtLFy4kIkTJ5KamsrAwAD19fWYzWays7PlTEZi
YiJBQUEX9LsTvp5USgUJkSY6+80E6XXoNGp6h0dG9eQBiAsPxitJHGnuJECrJibMSFRoECql
kq5+Myd7BnGcYb+rHgAcDgednZ0AJCQkyC/TkZERtm/fzsGDB+VtlUolBQUFLFmyBI/Hw8aN
G6mtrSUmJoaf/OQnco62traW559/ntraWj7++GO++93vXlJdcWpqKk8//TSJiYmEhYWh0+mw
2+28+eabvPvuuxw9epTOzk5SUlLo6Ojggw8+YGBggClTpvD444/LVS8tLS388z//83nPV1dX
x9q1a2ltbWXx4sXceeed8v04n/DwcJ566inS09MxmUzY7Xb+/d//nWPHjtHS0iJvN3nyZDIy
MoiPj/fbv6KigsHBQRISEviXf/kXoqOjkSSJoaEhWlpaztlYnJmZyU9+8hMSEhIIDQ0lMDCQ
4eFh3nnnHdauXcuhQ4fkqpPT5efn8+1vf5vMzEyUSiX19fW8+uqrVFRUsH79embOnCl3zX3m
mWeIj48nNDQUvV7PwMAAf/3rX1m/fj0HDhzg/vvv96vucLlcrFu3jhMnTjBjxgwWLlxIeno6
UVFRzJw5k40bN7Jq1SpSUlJ48skn5UbgL4/HUKvVPPHEE0yfPp2QkBDa29v505/+xKFDh5g0
aRIPPfQQ0dHRKJVK3n77bdavX09zc7Nc7VdZWcnevXsJDAzkqaeeYsaMGQBkZWWxatUqDhw4
QFVVldwG5ZOens79998vl5IaGhr44x//SE1NDc3NzcyYMYNvfvObTJgwgdWrV1NbW8uyZcvk
HL9Wq72gEqfw9aVSKomPMBEZEsS/P7wACTBbHTS097G5tI5jrb3ytrHhwWjVKm7MS2HepDSi
QgwEBepQKhQMj9g50tzJe7uO0NThXzq46gHA6XQyODgIgMlkknNiTqeTyspKPv30078lRq1G
q9WyZMkShoaGqKurw263841vfIMpU6bIJYfCwkIWLVrEa6+9RmVlJSMjI5eUG4qNjSU2Ntav
ntxkMnHLLbfwySef4HQ66e7uJiUlhWPHjtHW1oZGo+GJJ54gPz/fL+icr1TT09PDu+++y+HD
h0lLS+M73/nORT3AYWFhLFq0SL5/ANnZ2dTV1fmVGEJCQggJCTnrcRwOh1xd5atmSUpKOmcb
Rnx8vBzsfNccFBTEtGnT2Lp1K93d3WdsoExMTCQ3N1dOT2hoKA0NDTQ2NlJeXi73dkpOTpZL
hqcff+rUqezatYvOzk65A4CP1+ulsbGRm266iR/96EeEhob6NZ772ph0Oh0xMTFnrXZUq9VM
nz6dCRMmoFAoMBqNJCYmcujQITIzM5k8ebJ8zzMyMggKCsLlcsklnaamJvr7+5k1axY5OTly
FWZubi6pqak0NzdTXl4+KgBkZWVRVFQkBya9Xk9cXJxchadSqYiIiCAqKko+ZkRExKjALvz9
sjvdvPppKaFBpzKJWo2K/LRYpmUlMCsnmVc/LeXzQ/UARIcGodOomZGdRE1LN3uqjnO8cwCt
Rs2CgnTuvHEiJkMAv/twH539ZvkcVz0AaLVa+eEbHBzE5XKh0+nQ6/XcdNNN8g/6gw8+oLOz
U34R9fT0MDR0qn/rjBkz/F6wKpWKadOm8dprr2E2m+np6bnk4vCJEyfYuHEj5eXl9Pb2MjIy
gtvtxmKxoNPp5HaBtrY2RkZGiIiIGPXyPxev10tZWRnf+c53aG9vJzw8nGeeeYaoqKiLSqdC
ofB7+QNnbbQ9kxkzZvDBBx/Q2toqjzOYNm0as2bNIiMj45xBw+1209TUxNatW6msrKSrq0u+
T1arFZ1Od8auq18Oimq1muTkZEwmk3w/g4ODcbvdNDQ08Pnnn1NdXU1nZyc2mw2Xy4XNZpMb
2r/s1ltv5cc//jFGo/GyemOdHniUSqWcIfjy2AGVSoVSqZR/o1arla6uLuDUd1FSUuL3nbhc
LhQKxRmrCDUazajf9Nd1rIJwdThcbv6y5SDwf731ONXYOz07iZ8+eBMP3VxAe98w1ce7GLE7
MVsdPPvGVnZXNf9f77JT+2wrq+dbCybzD7dM4XBDO+/vOoLvabrqAUCn08nVCydPnsRqtRIU
FERAQADTp09n+vTpABw5ckR+mAD5BQCc8eUeFBSEQqHA4/Fgs9lG/f18JEmisrKSn/3sZ/T3
9xMbG0tISAjx8fF4vV7Ky8v9th8aGsLlchEREXHRLxur1YrH48HlcpGRkXHW3OjVlJmZyb/+
67/y5ptv0tHRQVdXF2+99RZvvvkmN954IytWrCA1NXXUfm63m/379/Piiy/S3d1NREQEYWFh
JCYmYrFYaGpquqhxC76XqG/8h9PpZMeOHbz88ssMDAwQERFBZGSkXM3k6731ZVqtljvuuOOy
X/6XwxcAAfbt28ehQ4dGpSU4OFh03xQu2alH69Tz5fvf4pqTrN5wgO/dOYuUmDCqj3fR8X+5
erVa6dfjR+LUiOGdFc0sKMggPiIYvU6D1XHq3XrVA0BAQADx8fFoNBoqKipoamoiIiLivFUm
JpNJrh/v6OggJSXF7++dnZ1IknTJdaFms5m1a9fS29vLzTffzO23305SUhJhYWGYzWbuvfde
v+31ej0qlYqhoSG5z/aFUCgUJCUlMWfOHLZs2cKBAwf48MMPefTRR+UeHdfK9OnTyc3NpaGh
gbq6Oo4dO0ZJSQl79+4lODiYlStXjrqu/v5+NmzYQEdHB7feeisLFy4kNTWViIgIKisref75
5+Uul+fj6y45MjKC0WgkODiYjo4ONm7cSG9vL0uXLmX+/PmkpaURGhpKSUkJL7zwgl/GwMfX
T/98L3+v13tRXXQvhk6nk397mZmZzJkz54xtOqd3eb4cX64GE8Ymj9dLS9cAGrWKIP2pEmd7
7zBqtZLxiZFsK2sYtY/D5WLQYkev1aBRq+BaBQC1Wk12djaZmZlUV1ezbt06IiMjzzvaNzw8
XH64duzY4VcN5JtSAk4Fikt5wHp6emhvb0eSJBYvXszUqVPlv9lstlG52vDwcHQ6HT09PdTW
1voNsDpXDlihUJCYmMjDDz9McHAwb7zxBu+88w6xsbHceeed1yz32t3djclkwmAwkJ+fT35+
PhaLhb/+9a+88cYbHDt2DIfDMeoFZjabaWhowGAwMG/ePAoLC1EoFEiShMvluqiXUl9fH5WV
lQwPDzNx4kQUCgWDg4M0NzdjNBq5+eabmTx58iUf/3S+enNfT58r9RI+nV6vJyoqCoVCgcvl
4pZbbiE2NtbvO/WNQr9UGo1GbttoaGjw+50Kf99MhgCsDhcut3/vHaVSQUyYEYfLjdl6qmt8
z5CFk92DTMlMIDbcSEef/29Or9MSFqzn0DEbNsffRg9f9bkRFAoFaWlpzJ07V+4T/vzzz/P+
++9z+PBhampq2L17t9xTyCcoKIjCwkKMRiM7duzg3XffZXh4mKGhId577z12796NXq/nxhtv
9Bs7cKF0Oh0qlQpJkigtLaW/v5+hoSF27tzJiy++KPf79snJySEsLAyr1cqqVasoKyujr6+P
iooKXnvtNex2+1nO9Lfrue2221i4cCEej4e//OUv7Nmz56LTfak2btzIc889x/79+xkcHMTj
8WC1Wuno6MDr9aLX6884AtnXvdJisVBdXc3AwACDg4Ns27aNNWvWyP3tz6S9vZ3GxkYGBwep
rq7m9ddfZ9euXUiSxDe+8Q25vl2r1TI8PCwHh76+PjZv3sy6devo7u6+pOuNiYkBoLW1lU2b
NnHs2DFaW1vPWJq4VFqtlvHjx5OQkEBDQwOrV6+mqakJm81Gf38/xcXF/PrXv+bjjz++5HMY
jUZ5/p+NGzdy4MABOjo6aGtru6SqT+HrY/7kdH50z41kJET4fZ4cHcp98ybRNWDheNcAAC63
l7e2V5AeH843b8zFZPhb7UKAVk1RXgp6rYbjXQM4Twso12QqCJ1Ox9KlSzGbzbz//vuUl5fT
0NBAQECAXBfsG0Djo1QqWbRoEXv37qW4uJhVq1bx1ltvAcgjWQsLC1m8ePEl5aKjoqJITk7m
2LFjvPfee3zxxRcolUosFgt2u11uf/BJTk6mqKiIEydOUFpaSn19PTqdDqfTydDQ0AXlVENC
Qvj2t79Na2sre/fu5dVXX5UnK7vaOjo62LZtG8XFxfKU1Q6Hg56eHhQKBfPnzx/VyAyn6rBz
cnJobGzkrbfeYvPmzUiSxMjICBaLBY/Hc9YAXFlZyU9/+lP5Pg0PD2O321mwYAEzZ84ETpWs
srKyaGlp4S9/+Qsff/wxXq8Xi8XCyMgIHo/nkhpH09PTSU1NpampiY8++kj+fm+//XYee+yx
iz7emSiVSiZNmsScOXN499132bJlC4cOHUKr1eL1erHZbJjNZhYtWnTJ5wgLCyM7O5uDBw9y
7Ngxfv7zn6PT6cjIyODJJ5/0G6go/H2RJIlv3JDNDROSOdbaS+2JbvQ6DQsKMjAG6vjzZ6Uc
O9kjb7/nyHGK8lK5Z04eiZEmdh85jtXhZE5eKnPyU9lV2UxJrX+HhGsSABQKBWFhYaxYsYIp
U6awfv16mpqasNvtcj3+xIkTufXWW1mwYIG8n8lk4n/+53946aWX2LFjByMjI8Cp3PSSJUtY
sWKF38tHo9EQExODx+Px643h+1yhUMifazQali9fjtPppKKiAqvVisFgYObMmdx555288MIL
aDQaue+5SqWS+5O//fbbOJ1O7HY7SUlJrFixgjfeeIPg4GC/vuohISHExcURGRnpdx9WrlzJ
j3/8Y3p6etiwYQOxsbGo1Wqio6NxOBx+aQ8ODiYuLo7Y2NhR99V3/IiIiFF/+7KHH36YsLAw
Pv/8c6xWKxaLBaVSSWxsLHfdddeoNg+f0NBQHnjgAcxmM0eOHGFkZASDwcD8+fMpKChg06ZN
dHd3nzV4BAQE4HA4kCSJhIQEFi9ezNKlS+VuqFFRUTz44INYrVZqa2uxWCwYjUYWLVrE+PHj
2bRpEwMDA3LpxNepwOFwnLMNxWAwsHLlSlavXk1DQwNut9uvh4/vOL6Rvz5KpVK+ryEhIX6Z
i6CgIGJjY+WR0L7zLF++nKysLN599126urqwWq3yVBl33nknS5culY9tMpmIi4sjLCzMr71F
qVQSFhYmn9dHpVJx77334vF4+Oyzz/wGCl6vxm/h2vh431FqT3Zz/7xJ5KbGkJtyqlTb0TfM
//f2Dg4cPeE3PcSAxcZ//XUb987L57bp4ynITEABWO1O3t1Zydqthxkc8a+pUEiXO/XkJfD1
oe7p6UGpVMqDi872g/YtuHLixAkAuSvhlZjd0+1209zcjN1uJzExUX4xnSvtZrOZ1tZW1Go1
CQkJX5v5WHz3vbu7m6GhIXluHoPBcN6XiW8OHqvVSmpq6lm73TocDt566y1+97vfsXTpUjnI
er1eIiMjz1pasFqttLa2YrfbycjIuOABcufjdDrp6elhZGREvt6rtVCQJEn09fVhNpsJCgoi
JCTkjIHxUg0ODsrPTEREBMHBwV/rIPDYC+9x8NiFdSAY67RqFdGhQbjcHroHR845LxCcaj8Y
FxOKWqnkeNcAfcOjp5Ko+OMPFddlQRiFQoFer7/geep9uaOwsLArnha1Wk1GRsYFb69QKAgO
Dv5aTsvru++XstaAXq/3m1voQvkmdTufwMDAq1KdodVqr9ngKYVCQURExAVd76U43yA/4e+X
0+3xm/f/fIZG7FQ0nr19zuerO0G+IAiCcFWJACBcUb46dN/8Sl/lRXgEYaz7u1oUXrj+1Go1
CxYsoLCwEL1eL2asFISvMBEAhCtKoVBgMBjE2rWC8DUgyueCIAhjlAgAgiAIY5SoAhIE4bpQ
BmpRBl2Z8R7CpREBQBCE60Kh06IKvPh5vIQrR1QBCYIgjFEiAAiCIIxRIgAIgiCMUSIACIIg
jFEiAAiCIIxRIgAIgiCMUSIACIIgjFF/V+MAJEmSV0vSaDTXbCbKs53X7Xbj8XhQKpVXdGGQ
rxOPx4PD4cDr9aJWq9FqtfL9kSQJr9eL0+mUl370LRMqCMLVd10CgMvlwmw2Y7FYcLvd6HQ6
goKCLnuFo6GhIbZt24bX62XevHnywhxDQ0O0t7cDEBsbe8UX1bDZbHz88cdotVpmzJhBXFwc
ANXV1VRVVREfH8/cuXPPeYzh4WHa29vxer3ExsYSGhp6yenxeDxUV1fLS2FezrEulSRJdHR0
UFVVRVNTE1arlYyMDIqKijCZTAB0d3dz5MgRmpqaGBkZISYmhm984xuo1Wrq6+tRKpXExcVd
l/QLwldRmCEArUaF0+2h3/K35R0DdRoCNOdfO9vqcGF3XeNF4X08Hg91dXWUlJTQ1tZGd3c3
drsdo9FIdHQ0ubm5TJ48mejo6Es6fldXF6+++ioej4fMzEw5ABw9epTVq1cD8Mgjj1BUVHTF
rglgZGSEV155BaPRSFxcnBwAiouLef3115k5c+Z5A0BtbS2rV6/G6XTyyCOPMG/evEtOT0dH
BytXriQsLIyHH374vOe+Gk6ePMmf//xnPv/8c+x2OyqVisLCQvLz8zGZTFgsFlatWsW2bduw
2WyoVCqSkpKYP38+NpuNn//852i1Wh5//HFuuumma55+Qfgqum/mBJLCg2nuGWL1tsPy50Xj
E5iSEovyXMvZIrGtqoUDDW34VpS8ZgHAYrGwY8cOPvroIyoqKvB6vSiVShQKBR7PqYi0fft2
nnzySW6//fYrem7ferYKhQKHw3FFj32l2Gw22tvb5cXmL8fhw4dpbW1Fo9Fcl2mZJUli7969
bN++HUmSuO+++xg3bpxfaeTgwYN89tlnBAYGMm/ePHJycggNDcVoNDI8PExrayt6vR6bzXbN
0y8IX0U6tYopKTEkhhkJC9KjAHwrA3slUKuUnOn9r1IoGRdpYlykidq2Pr+/XZMA4PV62bt3
L6+++iqtra2Eh4dzzz33kJqaik6no7+/n4qKCnbt2kVvb+8VP/+kSZN4/vnnUSgUjBs37oof
/0rIy8vjueeeQ5Kky07joUOHUKvVjB8/nuzs7CuTwItgs9loaWnBYrEwdepUHnnkEUJDQ/2q
9w4fPozH42HcuHE8+eSTxMTEoFKpkCSJ+Ph4fve736FSqS5p/WJB+HtUlJ3I/vo2lJkJo/62
p/YkZc2dZ9zPqNfxg1un4vVK1HX0c/p68lc9AEiSRGtrK5s3b6a1tZWUlBRWrlxJeno6Wq1W
LgHMnTuXBx98EK/XO2p/SZJwOBxyPX5cXBw6nQ6FQnFBbQahoaFyvfPpDcO+Y0uShNvtxmw2
o1AoMBqNqNXqMx7ft73L5cLhcKDT6Ual+ULuiW8fhUIhL6OYn58/Ko1erxfp/74xpVKJ1+vF
YrEwNDRESEgIQUFBful0OBwcOXKEkJAQFi1a5FcC8J3X4/Fgs9lQq9XodDq5JHaue+m7bqfT
SUtLi7zY+un3ybeNzWbDarUCMHXqVIxGI16vVz6+JEkMDAygVqtJS0uTq/x8DeZ6vZ6pU6eO
uhe+fX33xWw2YzabCQ8PlxuPTz+H1+vFarXS0dFBUFAQERERaDQa0cgsfO0kRQRz+5RMXtl2
mCkpMai+9FxYnW6sTvcZ940NDWJCQgQbDjVQ236NSwAej4fDhw+zb98+AgICWLFiBRMmTPB7
sNVqNUFBQaOWD5Qkid7eXl599VU2bdokv1QMBgOLFy/mkUceITIy8rxpaGn5/9l7z/iqjnPf
/7t7U+9dQr0AEgjRm7EhgAHjgiExNnGPW3JiJ9c3OTkn95PEuYnj+O9z7MTH8HccXHAD02x6
tRESIAkhCUmooF5Q25L21u7lviB7hY0kmgHbYX3fINaaNWvWrLXnN/M8z8w08etf/xqJRMIv
f/lLUlNTAejt7WXbtm3s3LmT1tZW7HY7AEFBQSxevJgf/vCHXg5jh8NByIYlTwAAIABJREFU
XV0da9eupbS0lMHBQTQaDUlJSZjNZnx9fS9bFpfLRWlpKb/73e/w8fFh9erVLFiwgObmZn77
299isVj41a9+RXp6OgDbt29nw4YNBAQEsGrVKjZu3EhpaSlWqxWJRMI999zDU089JZSzsrIS
g8HA1KlTmTp1qtDYOZ1OysvLefvttyktLcVsNiORSAgKCmLWrFk8+OCDo/a2HQ4Hzc3NvPvu
uxw4cEB4D8HBwdxzzz0sX76c0NBQbDYb77zzDtu3b2dwcBCADz74gC1btiCRSMjJyUGpVHL8
+HH0ej12u53du3dTWFgInBf23/3ud7hcLv7X//pfyOVynnzySSZPnix8D/39/ezfv59NmzbR
0NAgBBHMnTuXRx55hKSkJFwuFy0tLfzXf/0XhYWFQoRWREQEP/nJT5g9ezYqlbgKpch3A51K
wd2TUokN9mXIYruqa6USCT+cNY6uARP7KhqwO707qzdcAKxWK21tbTgcDqZOnUpqauoVh2f2
9fXxhz/8ga+++gp/f3+SkpIAaG1tZePGjXR1dfEf//Efl43qsVqtnDt3DolE4mVfr6ys5IMP
PkCtVpOUlIRKpcJisdDS0sKHH36Iy+XiueeeE0I4y8rK+M1vfkNbWxuBgYGkpaUhlUrp7e29
olGA2+2mvr6e1157jc7OTpYsWcLUqVMBsNlsnDt3DrPZ7FVGk8lEZ2cnZ8+epaqqCq1WS0xM
DFarlY6ODnbv3k1SUhL3338/cN4RHhUVxapVq7zquaWlhd/+9re0trYSERFBcHAwbrebgYEB
9uzZw7hx40YUALfbTWNjI6+99hrHjx8nODiYlJQU7HY7bW1t/P3vf6evr48f/ehHaDQaVCoV
Op1OeA6PH0IikaBWq4WIL6PRiMViQS6XC6MUrVaLVCrFbrfT1dWFVCoVfAButxuj0ci7777L
xo0bkUgkxMfH4+Pjg8FgoKGhgdbWVpKSkmhvb+c///M/OXPmDLGxsURGRmIymaitreX3v/89
APPnz7/s+xIR+aaRSSVMTopiWko020vqODdouqrr06OCmTgmgu0ldVS39w07f8MFwGKx0Nl5
3jYVHx8v/NitViunT5+moaFBSCuVSomPj2fixIm4XC52795NSUkJAQEBPProo0ybNg2A/Px8
/v73v3PixAl2797N/ffff03D+rCwMO666y7S0tJISEjA19eXgYEB3n//ffbv38/Ro0dZuXIl
0dHR6PV6PvzwQzo6OkhOTua+++4jIyMDuVxOTU0Nf/jDHy57v46ODv7+979TW1vLxIkTWbNm
DX5+fldUVs+oJysri+joaAYHB3nttddob2/nzJkzQrqsrCx+/OMfD7P9FxYW0tXVRXh4OP/2
b/9GcnIyLpeLtrY2Tp06RWRk5Ij3NZvNfPnll5SUlBATE8Pq1auZMmUKZrOZffv2sXnzZnbv
3s20adOYOXMmCxYsIDU1lY8//piCggLmzJnD4sWLvUxrCxYsYN26dZw4cYKcnBweeughANRq
Nb6+vqM66k+ePMnWrVtRKpUsXLiQ+fPnExYWRmdnJ01NTURFReF0Otm6dSu1tbUkJiby/PPP
M3bsWPR6PevWrWPnzp1s3ryZvLy86x4OLCJyvYkM8GFZbjLnBobYV9GIyWq/4msVMikrpqYz
aLaxo7Qe14XG/39wwwXAZrPR13deeQIDA4XetMlkYu/evWzbtu2fhZHLWbJkCRMnTsRoNFJU
VITRaOSee+7hnnvuEa4NDw+noaGBLVu2cPToUZYtW4ZGc/U7CyUmJvLkk096mQOioqJYunQp
R48exWKxcO7cOaKjo6mpqeHMmTPIZDLWrFnD/PnzkclkwnPJ5ZeuyoGBAbZu3Up+fj5hYWH8
6Ec/Ijo6+orLGhYWxtNPP+1lJtu3bx+tra1ekTKxsbHExsYOu95iseB2u1EqlcTFxRETEyP0
ovPy8gTz18Xo9XqOHz+Oy+Vi6dKlLFy4EK1WC4C/vz9tbW3s2rWLr776ihkzZhATE4NOpxOi
fSIiIhg/frxQVx48TuHg4GBycnIu+/xut5t9+/ZhMBiYN28eq1evJiIiAolEQlRUlJCHXq+n
uLgYp9PJjBkzBF9CZGQkS5YsYf/+/bS0tFBbW0teXt5l7ysi8k2hkEn53vgxRAf58v8fPEVL
7+BVXT82NpRJYyLIr2mlpmN47x9uggB4ZncCwoxQAKVSSUZGBgaDATgfM28wGISGqLe3l/7+
ftxuN3PnzvWaSatSqZgxYwZbtmxBr9fT19d3VY2pB6VSiclkYvfu3VRVVaHX6zGZTIJ5QqPR
COaY1tZWTCYT/v7+zJkzZ1iDNhput5u6ujpefvlliouLAXjiiSfIzMy8qrJ6/CQXcqWjB4CM
jAyUSiXt7e385je/IS0tjezsbCZOnEh4ePioM5U9IbTBwcGkp6d7CW1wcDBpaWkcPnyY+vr6
q3aGXw1ut5vq6mp0Oh3jxo0jPDzca9TnMXd1dXVhMBiQSqWEhIRQW1srpFEoFCgUCsEkKCLy
bSYlMoiluSnkn2nlaE0rTtfwHvxoKGRSFmYnolMr+aSgasTeP9wEAVCpVISFhQHnf5xWqxWt
VotWq2XBggXChKdf/epXHD9+XLiuv79fcDaOZJ6IjIwU4vr7+/uvWgDcbjfd3d386le/ora2
FrvdjtvtFiJJLu4Rd3d3Y7FYiI+Pv6rRhtvtpr29nc7OThwOB9/73veYPHnyTVumwsPEiRN5
4oknWLt2LdXV1dTW1rJnzx40Gg133nknjzzyiNCzvxCbzUZvb69gvru40fX390ej0dDd3S1E
6NwIPPXo4+NDYGDgqPXX39+P1WrFbrezdu1aL2Fzu90YDAa0Wi16vf6GlVVE5Osil0p4Zv5E
HE4XB043oZbLUfmcb64VUhkymYQQXw0OlxujxTbMuTs+LozsuDC+qm6h6RIjhxsuAGq1mqio
KKRSKUVFRXR0dBAQECA4BT2jg4t7oD4+PoJpRq/XD4uN94wOFArFsJ7xlWC1Wnn99dcpKysj
PT2dlStXkpmZSVRUFEajkZUrV3ql96zxYzabBaG4UkJDQ8nMzKSoqIhDhw4xZcoUFi9efFmz
0fVEoVCwcuVKFi1aRHFxMceOHaOiooKWlhbee+89bDYbP/3pT4c9l0KhwM/PD5PJhNVq9Xp2
t9stHA8ODr6h5ZdIJISFhdHf34/RaBz1Hfj4+AjvKj09XZiVfSEqlYrExMQbWl4Rka/D2NhQ
4oL9UCvk/GHVXK9zOrUSCbDh2bvoNVr44/YCTjb+c0SrVcq5LTOeAJ2aj45WXnLkcMNbIKVS
SVpaGtHR0bS0tLB161ZCQ0MvG74ZHBwsmDg8zkLPD97lclFUVASAr6/vNTU+nsgat9vN448/
zowZM4RzI9nDg4KCUKlUnDt3jo6ODq+G5VI9X6lUSkZGBv/7f/9v3n33XTZv3swbb7xBREQE
eXl5Ny0m3Wg0olar8ff3Z968ecybN4++vj7Wrl3L1q1bKSkpwWazDQuPVKvVREZGUlNTQ3Nz
M9nZ2SiVSiHPxsZGTCYTCQkJN3xUk5KSwsGDB6mpqaG/v3/ENYJCQ0PRaDRIJBKys7N5/PHH
verYM+fjRpqrRES+Lq19Bv6ypwSZdHj7sGb2OKQSCe98WY7ZZqepZ8DrfEZ0CBPHhHO4qplW
veGS97nhAiCRSEhLS2Pu3Ll88sknfP7557jdbu644w7CwsJQKBQYDAb6+/u9rvPz8yMzM5PS
0lJ27NjB2LFjmTBhAm63m5KSEvbs2YNCoSA7O/trLXfgCXPMzs5GKpXS1NREfn7+sLj+pKQk
/Pz8aG1t5d1332XlypWEhITQ19fHsWPHRnWieggODubee++lq6uLQ4cO8cYbb/DLX/5SiPe/
0Rw6dAij0Uhubi7R0dGo1WrkcjlarRaJRCLMwr0Yf39/srOzqaysZMeOHURHRzNhwgSsVisH
Dx6ksLAQuVzOlClTrtgvci1IpVLmzJnD0aNHKSwsJDY2lnnz5hEUFERfXx9tbW3ExMQQHh5O