forked from SP-2827/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdet_mv3_pse.yml
135 lines (128 loc) · 3.29 KB
/
det_mv3_pse.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
Global:
use_gpu: true
epoch_num: 600
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/det_mv3_pse/
save_epoch_step: 600
# evaluation is run every 63 iterations
eval_batch_step: [ 0,63 ]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_pse/predicts_pse.txt
Architecture:
model_type: det
algorithm: PSE
Transform: null
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: FPN
out_channels: 96
Head:
name: PSEHead
hidden_dim: 96
out_channels: 7
Loss:
name: PSELoss
alpha: 0.7
ohem_ratio: 3
kernel_sample_mask: pred
reduction: none
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Step
learning_rate: 0.001
step_size: 200
gamma: 0.1
regularizer:
name: 'L2'
factor: 0.0005
PostProcess:
name: PSEPostProcess
thresh: 0
box_thresh: 0.85
min_area: 16
box_type: quad # 'quad' or 'poly'
scale: 1
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- ColorJitter:
brightness: 0.12549019607843137
saturation: 0.5
- IaaAugment:
augmenter_args:
- { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10, 10 ] } }
- MakePseGt:
kernel_num: 7
min_shrink_ratio: 0.4
size: 640
- RandomCropImgMask:
size: [ 640,640 ]
main_key: gt_text
crop_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 736
limit_type: min
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'shape', 'polys', 'ignore_tags' ]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 8