forked from SP-2827/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrrg_targets.py
696 lines (569 loc) · 28.6 KB
/
drrg_targets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/drrg_targets.py
"""
import cv2
import numpy as np
from lanms import merge_quadrangle_n9 as la_nms
from numpy.linalg import norm
class DRRGTargets(object):
def __init__(self,
orientation_thr=2.0,
resample_step=8.0,
num_min_comps=9,
num_max_comps=600,
min_width=8.0,
max_width=24.0,
center_region_shrink_ratio=0.3,
comp_shrink_ratio=1.0,
comp_w_h_ratio=0.3,
text_comp_nms_thr=0.25,
min_rand_half_height=8.0,
max_rand_half_height=24.0,
jitter_level=0.2,
**kwargs):
super().__init__()
self.orientation_thr = orientation_thr
self.resample_step = resample_step
self.num_max_comps = num_max_comps
self.num_min_comps = num_min_comps
self.min_width = min_width
self.max_width = max_width
self.center_region_shrink_ratio = center_region_shrink_ratio
self.comp_shrink_ratio = comp_shrink_ratio
self.comp_w_h_ratio = comp_w_h_ratio
self.text_comp_nms_thr = text_comp_nms_thr
self.min_rand_half_height = min_rand_half_height
self.max_rand_half_height = max_rand_half_height
self.jitter_level = jitter_level
self.eps = 1e-8
def vector_angle(self, vec1, vec2):
if vec1.ndim > 1:
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps).reshape((-1, 1))
else:
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps)
if vec2.ndim > 1:
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps).reshape((-1, 1))
else:
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps)
return np.arccos(
np.clip(
np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))
def vector_slope(self, vec):
assert len(vec) == 2
return abs(vec[1] / (vec[0] + self.eps))
def vector_sin(self, vec):
assert len(vec) == 2
return vec[1] / (norm(vec) + self.eps)
def vector_cos(self, vec):
assert len(vec) == 2
return vec[0] / (norm(vec) + self.eps)
def find_head_tail(self, points, orientation_thr):
assert points.ndim == 2
assert points.shape[0] >= 4
assert points.shape[1] == 2
assert isinstance(orientation_thr, float)
if len(points) > 4:
pad_points = np.vstack([points, points[0]])
edge_vec = pad_points[1:] - pad_points[:-1]
theta_sum = []
adjacent_vec_theta = []
for i, edge_vec1 in enumerate(edge_vec):
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
adjacent_edge_vec = edge_vec[adjacent_ind]
temp_theta_sum = np.sum(
self.vector_angle(edge_vec1, adjacent_edge_vec))
temp_adjacent_theta = self.vector_angle(adjacent_edge_vec[0],
adjacent_edge_vec[1])
theta_sum.append(temp_theta_sum)
adjacent_vec_theta.append(temp_adjacent_theta)
theta_sum_score = np.array(theta_sum) / np.pi
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
poly_center = np.mean(points, axis=0)
edge_dist = np.maximum(
norm(
pad_points[1:] - poly_center, axis=-1),
norm(
pad_points[:-1] - poly_center, axis=-1))
dist_score = edge_dist / (np.max(edge_dist) + self.eps)
position_score = np.zeros(len(edge_vec))
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
score += 0.35 * dist_score
if len(points) % 2 == 0:
position_score[(len(score) // 2 - 1)] += 1
position_score[-1] += 1
score += 0.1 * position_score
pad_score = np.concatenate([score, score])
score_matrix = np.zeros((len(score), len(score) - 3))
x = np.arange(len(score) - 3) / float(len(score) - 4)
gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power(
(x - 0.5) / 0.5, 2.) / 2)
gaussian = gaussian / np.max(gaussian)
for i in range(len(score)):
score_matrix[i, :] = score[i] + pad_score[(i + 2):(i + len(
score) - 1)] * gaussian * 0.3
head_start, tail_increment = np.unravel_index(score_matrix.argmax(),
score_matrix.shape)
tail_start = (head_start + tail_increment + 2) % len(points)
head_end = (head_start + 1) % len(points)
tail_end = (tail_start + 1) % len(points)
if head_end > tail_end:
head_start, tail_start = tail_start, head_start
head_end, tail_end = tail_end, head_end
head_inds = [head_start, head_end]
tail_inds = [tail_start, tail_end]
else:
if self.vector_slope(points[1] - points[0]) + self.vector_slope(
points[3] - points[2]) < self.vector_slope(points[
2] - points[1]) + self.vector_slope(points[0] - points[
3]):
horizontal_edge_inds = [[0, 1], [2, 3]]
vertical_edge_inds = [[3, 0], [1, 2]]
else:
horizontal_edge_inds = [[3, 0], [1, 2]]
vertical_edge_inds = [[0, 1], [2, 3]]
vertical_len_sum = norm(points[vertical_edge_inds[0][0]] - points[
vertical_edge_inds[0][1]]) + norm(points[vertical_edge_inds[1][
0]] - points[vertical_edge_inds[1][1]])
horizontal_len_sum = norm(points[horizontal_edge_inds[0][
0]] - points[horizontal_edge_inds[0][1]]) + norm(points[
horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1]
[1]])
if vertical_len_sum > horizontal_len_sum * orientation_thr:
head_inds = horizontal_edge_inds[0]
tail_inds = horizontal_edge_inds[1]
else:
head_inds = vertical_edge_inds[0]
tail_inds = vertical_edge_inds[1]
return head_inds, tail_inds
def reorder_poly_edge(self, points):
assert points.ndim == 2
assert points.shape[0] >= 4
assert points.shape[1] == 2
head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr)
head_edge, tail_edge = points[head_inds], points[tail_inds]
pad_points = np.vstack([points, points])
if tail_inds[1] < 1:
tail_inds[1] = len(points)
sideline1 = pad_points[head_inds[1]:tail_inds[1]]
sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))]
sideline_mean_shift = np.mean(
sideline1, axis=0) - np.mean(
sideline2, axis=0)
if sideline_mean_shift[1] > 0:
top_sideline, bot_sideline = sideline2, sideline1
else:
top_sideline, bot_sideline = sideline1, sideline2
return head_edge, tail_edge, top_sideline, bot_sideline
def cal_curve_length(self, line):
assert line.ndim == 2
assert len(line) >= 2
edges_length = np.sqrt((line[1:, 0] - line[:-1, 0])**2 + (line[
1:, 1] - line[:-1, 1])**2)
total_length = np.sum(edges_length)
return edges_length, total_length
def resample_line(self, line, n):
assert line.ndim == 2
assert line.shape[0] >= 2
assert line.shape[1] == 2
assert isinstance(n, int)
assert n > 2
edges_length, total_length = self.cal_curve_length(line)
t_org = np.insert(np.cumsum(edges_length), 0, 0)
unit_t = total_length / (n - 1)
t_equidistant = np.arange(1, n - 1, dtype=np.float32) * unit_t
edge_ind = 0
points = [line[0]]
for t in t_equidistant:
while edge_ind < len(edges_length) - 1 and t > t_org[edge_ind + 1]:
edge_ind += 1
t_l, t_r = t_org[edge_ind], t_org[edge_ind + 1]
weight = np.array(
[t_r - t, t - t_l], dtype=np.float32) / (t_r - t_l + self.eps)
p_coords = np.dot(weight, line[[edge_ind, edge_ind + 1]])
points.append(p_coords)
points.append(line[-1])
resampled_line = np.vstack(points)
return resampled_line
def resample_sidelines(self, sideline1, sideline2, resample_step):
assert sideline1.ndim == sideline2.ndim == 2
assert sideline1.shape[1] == sideline2.shape[1] == 2
assert sideline1.shape[0] >= 2
assert sideline2.shape[0] >= 2
assert isinstance(resample_step, float)
_, length1 = self.cal_curve_length(sideline1)
_, length2 = self.cal_curve_length(sideline2)
avg_length = (length1 + length2) / 2
resample_point_num = max(int(float(avg_length) / resample_step) + 1, 3)
resampled_line1 = self.resample_line(sideline1, resample_point_num)
resampled_line2 = self.resample_line(sideline2, resample_point_num)
return resampled_line1, resampled_line2
def dist_point2line(self, point, line):
assert isinstance(line, tuple)
point1, point2 = line
d = abs(np.cross(point2 - point1, point - point1)) / (
norm(point2 - point1) + 1e-8)
return d
def draw_center_region_maps(self, top_line, bot_line, center_line,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map,
region_shrink_ratio):
assert top_line.shape == bot_line.shape == center_line.shape
assert (center_region_mask.shape == top_height_map.shape ==
bot_height_map.shape == sin_map.shape == cos_map.shape)
assert isinstance(region_shrink_ratio, float)
h, w = center_region_mask.shape
for i in range(0, len(center_line) - 1):
top_mid_point = (top_line[i] + top_line[i + 1]) / 2
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2
sin_theta = self.vector_sin(top_mid_point - bot_mid_point)
cos_theta = self.vector_cos(top_mid_point - bot_mid_point)
tl = center_line[i] + (top_line[i] - center_line[i]
) * region_shrink_ratio
tr = center_line[i + 1] + (top_line[i + 1] - center_line[i + 1]
) * region_shrink_ratio
br = center_line[i + 1] + (bot_line[i + 1] - center_line[i + 1]
) * region_shrink_ratio
bl = center_line[i] + (bot_line[i] - center_line[i]
) * region_shrink_ratio
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)
cv2.fillPoly(center_region_mask, [current_center_box], color=1)
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta)
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta)
current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0,
w - 1)
current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0,
h - 1)
min_coord = np.min(current_center_box, axis=0).astype(np.int32)
max_coord = np.max(current_center_box, axis=0).astype(np.int32)
current_center_box = current_center_box - min_coord
box_sz = (max_coord - min_coord + 1)
center_box_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8)
cv2.fillPoly(center_box_mask, [current_center_box], color=1)
inds = np.argwhere(center_box_mask > 0)
inds = inds + (min_coord[1], min_coord[0])
inds_xy = np.fliplr(inds)
top_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line(
inds_xy, (top_line[i], top_line[i + 1]))
bot_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line(
inds_xy, (bot_line[i], bot_line[i + 1]))
def generate_center_mask_attrib_maps(self, img_size, text_polys):
assert isinstance(img_size, tuple)
h, w = img_size
center_lines = []
center_region_mask = np.zeros((h, w), np.uint8)
top_height_map = np.zeros((h, w), dtype=np.float32)
bot_height_map = np.zeros((h, w), dtype=np.float32)
sin_map = np.zeros((h, w), dtype=np.float32)
cos_map = np.zeros((h, w), dtype=np.float32)
for poly in text_polys:
polygon_points = poly
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
resampled_top_line, resampled_bot_line = self.resample_sidelines(
top_line, bot_line, self.resample_step)
resampled_bot_line = resampled_bot_line[::-1]
center_line = (resampled_top_line + resampled_bot_line) / 2
if self.vector_slope(center_line[-1] - center_line[0]) > 2:
if (center_line[-1] - center_line[0])[1] < 0:
center_line = center_line[::-1]
resampled_top_line = resampled_top_line[::-1]
resampled_bot_line = resampled_bot_line[::-1]
else:
if (center_line[-1] - center_line[0])[0] < 0:
center_line = center_line[::-1]
resampled_top_line = resampled_top_line[::-1]
resampled_bot_line = resampled_bot_line[::-1]
line_head_shrink_len = np.clip(
(norm(top_line[0] - bot_line[0]) * self.comp_w_h_ratio),
self.min_width, self.max_width) / 2
line_tail_shrink_len = np.clip(
(norm(top_line[-1] - bot_line[-1]) * self.comp_w_h_ratio),
self.min_width, self.max_width) / 2
num_head_shrink = int(line_head_shrink_len // self.resample_step)
num_tail_shrink = int(line_tail_shrink_len // self.resample_step)
if len(center_line) > num_head_shrink + num_tail_shrink + 2:
center_line = center_line[num_head_shrink:len(center_line) -
num_tail_shrink]
resampled_top_line = resampled_top_line[num_head_shrink:len(
resampled_top_line) - num_tail_shrink]
resampled_bot_line = resampled_bot_line[num_head_shrink:len(
resampled_bot_line) - num_tail_shrink]
center_lines.append(center_line.astype(np.int32))
self.draw_center_region_maps(
resampled_top_line, resampled_bot_line, center_line,
center_region_mask, top_height_map, bot_height_map, sin_map,
cos_map, self.center_region_shrink_ratio)
return (center_lines, center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map)
def generate_rand_comp_attribs(self, num_rand_comps, center_sample_mask):
assert isinstance(num_rand_comps, int)
assert num_rand_comps > 0
assert center_sample_mask.ndim == 2
h, w = center_sample_mask.shape
max_rand_half_height = self.max_rand_half_height
min_rand_half_height = self.min_rand_half_height
max_rand_height = max_rand_half_height * 2
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio,
self.min_width, self.max_width)
margin = int(
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1
if 2 * margin + 1 > min(h, w):
assert min(h, w) > (np.sqrt(2) * (self.min_width + 1))
max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1)
min_rand_half_height = max(max_rand_half_height / 4,
self.min_width / 2)
max_rand_height = max_rand_half_height * 2
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio,
self.min_width, self.max_width)
margin = int(
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1
inner_center_sample_mask = np.zeros_like(center_sample_mask)
inner_center_sample_mask[margin:h - margin, margin:w - margin] = \
center_sample_mask[margin:h - margin, margin:w - margin]
kernel_size = int(np.clip(max_rand_half_height, 7, 21))
inner_center_sample_mask = cv2.erode(
inner_center_sample_mask,
np.ones((kernel_size, kernel_size), np.uint8))
center_candidates = np.argwhere(inner_center_sample_mask > 0)
num_center_candidates = len(center_candidates)
sample_inds = np.random.choice(num_center_candidates, num_rand_comps)
rand_centers = center_candidates[sample_inds]
rand_top_height = np.random.randint(
min_rand_half_height,
max_rand_half_height,
size=(len(rand_centers), 1))
rand_bot_height = np.random.randint(
min_rand_half_height,
max_rand_half_height,
size=(len(rand_centers), 1))
rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8))
rand_cos = rand_cos * scale
rand_sin = rand_sin * scale
height = (rand_top_height + rand_bot_height)
width = np.clip(height * self.comp_w_h_ratio, self.min_width,
self.max_width)
rand_comp_attribs = np.hstack([
rand_centers[:, ::-1], height, width, rand_cos, rand_sin,
np.zeros_like(rand_sin)
]).astype(np.float32)
return rand_comp_attribs
def jitter_comp_attribs(self, comp_attribs, jitter_level):
"""Jitter text components attributes.
Args:
comp_attribs (ndarray): The text component attributes.
jitter_level (float): The jitter level of text components
attributes.
Returns:
jittered_comp_attribs (ndarray): The jittered text component
attributes (x, y, h, w, cos, sin, comp_label).
"""
assert comp_attribs.shape[1] == 7
assert comp_attribs.shape[0] > 0
assert isinstance(jitter_level, float)
x = comp_attribs[:, 0].reshape((-1, 1))
y = comp_attribs[:, 1].reshape((-1, 1))
h = comp_attribs[:, 2].reshape((-1, 1))
w = comp_attribs[:, 3].reshape((-1, 1))
cos = comp_attribs[:, 4].reshape((-1, 1))
sin = comp_attribs[:, 5].reshape((-1, 1))
comp_labels = comp_attribs[:, 6].reshape((-1, 1))
x += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * (
h * np.abs(cos) + w * np.abs(sin)) * jitter_level
y += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * (
h * np.abs(sin) + w * np.abs(cos)) * jitter_level
h += (np.random.random(size=(len(comp_attribs), 1)) - 0.5
) * h * jitter_level
w += (np.random.random(size=(len(comp_attribs), 1)) - 0.5
) * w * jitter_level
cos += (np.random.random(size=(len(comp_attribs), 1)) - 0.5
) * 2 * jitter_level
sin += (np.random.random(size=(len(comp_attribs), 1)) - 0.5
) * 2 * jitter_level
scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8))
cos = cos * scale
sin = sin * scale
jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, comp_labels])
return jittered_comp_attribs
def generate_comp_attribs(self, center_lines, text_mask, center_region_mask,
top_height_map, bot_height_map, sin_map, cos_map):
"""Generate text component attributes.
Args:
center_lines (list[ndarray]): The list of text center lines .
text_mask (ndarray): The text region mask.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The map on which the distance from points
to top side lines will be drawn for each pixel in text center
regions.
bot_height_map (ndarray): The map on which the distance from points
to bottom side lines will be drawn for each pixel in text
center regions.
sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
Returns:
pad_comp_attribs (ndarray): The padded text component attributes
of a fixed size.
"""
assert isinstance(center_lines, list)
assert (
text_mask.shape == center_region_mask.shape == top_height_map.shape
== bot_height_map.shape == sin_map.shape == cos_map.shape)
center_lines_mask = np.zeros_like(center_region_mask)
cv2.polylines(center_lines_mask, center_lines, 0, 1, 1)
center_lines_mask = center_lines_mask * center_region_mask
comp_centers = np.argwhere(center_lines_mask > 0)
y = comp_centers[:, 0]
x = comp_centers[:, 1]
top_height = top_height_map[y, x].reshape(
(-1, 1)) * self.comp_shrink_ratio
bot_height = bot_height_map[y, x].reshape(
(-1, 1)) * self.comp_shrink_ratio
sin = sin_map[y, x].reshape((-1, 1))
cos = cos_map[y, x].reshape((-1, 1))
top_mid_points = comp_centers + np.hstack(
[top_height * sin, top_height * cos])
bot_mid_points = comp_centers - np.hstack(
[bot_height * sin, bot_height * cos])
width = (top_height + bot_height) * self.comp_w_h_ratio
width = np.clip(width, self.min_width, self.max_width)
r = width / 2
tl = top_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos])
tr = top_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos])
br = bot_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos])
bl = bot_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos])
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32)
score = np.ones((text_comps.shape[0], 1), dtype=np.float32)
text_comps = np.hstack([text_comps, score])
text_comps = la_nms(text_comps, self.text_comp_nms_thr)
if text_comps.shape[0] >= 1:
img_h, img_w = center_region_mask.shape
text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1)
text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1)
comp_centers = np.mean(
text_comps[:, 0:8].reshape((-1, 4, 2)), axis=1).astype(np.int32)
x = comp_centers[:, 0]
y = comp_centers[:, 1]
height = (top_height_map[y, x] + bot_height_map[y, x]).reshape(
(-1, 1))
width = np.clip(height * self.comp_w_h_ratio, self.min_width,
self.max_width)
cos = cos_map[y, x].reshape((-1, 1))
sin = sin_map[y, x].reshape((-1, 1))
_, comp_label_mask = cv2.connectedComponents(
center_region_mask, connectivity=8)
comp_labels = comp_label_mask[y, x].reshape(
(-1, 1)).astype(np.float32)
x = x.reshape((-1, 1)).astype(np.float32)
y = y.reshape((-1, 1)).astype(np.float32)
comp_attribs = np.hstack(
[x, y, height, width, cos, sin, comp_labels])
comp_attribs = self.jitter_comp_attribs(comp_attribs,
self.jitter_level)
if comp_attribs.shape[0] < self.num_min_comps:
num_rand_comps = self.num_min_comps - comp_attribs.shape[0]
rand_comp_attribs = self.generate_rand_comp_attribs(
num_rand_comps, 1 - text_mask)
comp_attribs = np.vstack([comp_attribs, rand_comp_attribs])
else:
comp_attribs = self.generate_rand_comp_attribs(self.num_min_comps,
1 - text_mask)
num_comps = (np.ones(
(comp_attribs.shape[0], 1),
dtype=np.float32) * comp_attribs.shape[0])
comp_attribs = np.hstack([num_comps, comp_attribs])
if comp_attribs.shape[0] > self.num_max_comps:
comp_attribs = comp_attribs[:self.num_max_comps, :]
comp_attribs[:, 0] = self.num_max_comps
pad_comp_attribs = np.zeros(
(self.num_max_comps, comp_attribs.shape[1]), dtype=np.float32)
pad_comp_attribs[:comp_attribs.shape[0], :] = comp_attribs
return pad_comp_attribs
def generate_text_region_mask(self, img_size, text_polys):
"""Generate text center region mask and geometry attribute maps.
Args:
img_size (tuple): The image size (height, width).
text_polys (list[list[ndarray]]): The list of text polygons.
Returns:
text_region_mask (ndarray): The text region mask.
"""
assert isinstance(img_size, tuple)
h, w = img_size
text_region_mask = np.zeros((h, w), dtype=np.uint8)
for poly in text_polys:
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
cv2.fillPoly(text_region_mask, polygon, 1)
return text_region_mask
def generate_effective_mask(self, mask_size: tuple, polygons_ignore):
"""Generate effective mask by setting the ineffective regions to 0 and
effective regions to 1.
Args:
mask_size (tuple): The mask size.
polygons_ignore (list[[ndarray]]: The list of ignored text
polygons.
Returns:
mask (ndarray): The effective mask of (height, width).
"""
mask = np.ones(mask_size, dtype=np.uint8)
for poly in polygons_ignore:
instance = poly.astype(np.int32).reshape(1, -1, 2)
cv2.fillPoly(mask, instance, 0)
return mask
def generate_targets(self, data):
"""Generate the gt targets for DRRG.
Args:
data (dict): The input result dictionary.
Returns:
data (dict): The output result dictionary.
"""
assert isinstance(data, dict)
image = data['image']
polygons = data['polys']
ignore_tags = data['ignore_tags']
h, w, _ = image.shape
polygon_masks = []
polygon_masks_ignore = []
for tag, polygon in zip(ignore_tags, polygons):
if tag is True:
polygon_masks_ignore.append(polygon)
else:
polygon_masks.append(polygon)
gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks)
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore)
(center_lines, gt_center_region_mask, gt_top_height_map,
gt_bot_height_map, gt_sin_map,
gt_cos_map) = self.generate_center_mask_attrib_maps((h, w),
polygon_masks)
gt_comp_attribs = self.generate_comp_attribs(
center_lines, gt_text_mask, gt_center_region_mask,
gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map)
mapping = {
'gt_text_mask': gt_text_mask,
'gt_center_region_mask': gt_center_region_mask,
'gt_mask': gt_mask,
'gt_top_height_map': gt_top_height_map,
'gt_bot_height_map': gt_bot_height_map,
'gt_sin_map': gt_sin_map,
'gt_cos_map': gt_cos_map
}
data.update(mapping)
data['gt_comp_attribs'] = gt_comp_attribs
return data
def __call__(self, data):
data = self.generate_targets(data)
return data