forked from SP-2827/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkie_unet_sdmgr.py
181 lines (157 loc) · 5.86 KB
/
kie_unet_sdmgr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import numpy as np
import cv2
__all__ = ["Kie_backbone"]
class Encoder(nn.Layer):
def __init__(self, num_channels, num_filters):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2D(
num_channels,
num_filters,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
self.bn1 = nn.BatchNorm(num_filters, act='relu')
self.conv2 = nn.Conv2D(
num_filters,
num_filters,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
self.bn2 = nn.BatchNorm(num_filters, act='relu')
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
def forward(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = self.conv2(x)
x = self.bn2(x)
x_pooled = self.pool(x)
return x, x_pooled
class Decoder(nn.Layer):
def __init__(self, num_channels, num_filters):
super(Decoder, self).__init__()
self.conv1 = nn.Conv2D(
num_channels,
num_filters,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
self.bn1 = nn.BatchNorm(num_filters, act='relu')
self.conv2 = nn.Conv2D(
num_filters,
num_filters,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)
self.bn2 = nn.BatchNorm(num_filters, act='relu')
self.conv0 = nn.Conv2D(
num_channels,
num_filters,
kernel_size=1,
stride=1,
padding=0,
bias_attr=False)
self.bn0 = nn.BatchNorm(num_filters, act='relu')
def forward(self, inputs_prev, inputs):
x = self.conv0(inputs)
x = self.bn0(x)
x = paddle.nn.functional.interpolate(
x, scale_factor=2, mode='bilinear', align_corners=False)
x = paddle.concat([inputs_prev, x], axis=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.conv2(x)
x = self.bn2(x)
return x
class UNet(nn.Layer):
def __init__(self):
super(UNet, self).__init__()
self.down1 = Encoder(num_channels=3, num_filters=16)
self.down2 = Encoder(num_channels=16, num_filters=32)
self.down3 = Encoder(num_channels=32, num_filters=64)
self.down4 = Encoder(num_channels=64, num_filters=128)
self.down5 = Encoder(num_channels=128, num_filters=256)
self.up1 = Decoder(32, 16)
self.up2 = Decoder(64, 32)
self.up3 = Decoder(128, 64)
self.up4 = Decoder(256, 128)
self.out_channels = 16
def forward(self, inputs):
x1, _ = self.down1(inputs)
_, x2 = self.down2(x1)
_, x3 = self.down3(x2)
_, x4 = self.down4(x3)
_, x5 = self.down5(x4)
x = self.up4(x4, x5)
x = self.up3(x3, x)
x = self.up2(x2, x)
x = self.up1(x1, x)
return x
class Kie_backbone(nn.Layer):
def __init__(self, in_channels, **kwargs):
super(Kie_backbone, self).__init__()
self.out_channels = 16
self.img_feat = UNet()
self.maxpool = nn.MaxPool2D(kernel_size=7)
def bbox2roi(self, bbox_list):
rois_list = []
rois_num = []
for img_id, bboxes in enumerate(bbox_list):
rois_num.append(bboxes.shape[0])
rois_list.append(bboxes)
rois = paddle.concat(rois_list, 0)
rois_num = paddle.to_tensor(rois_num, dtype='int32')
return rois, rois_num
def pre_process(self, img, relations, texts, gt_bboxes, tag, img_size):
img, relations, texts, gt_bboxes, tag, img_size = img.numpy(
), relations.numpy(), texts.numpy(), gt_bboxes.numpy(), tag.numpy(
).tolist(), img_size.numpy()
temp_relations, temp_texts, temp_gt_bboxes = [], [], []
h, w = int(np.max(img_size[:, 0])), int(np.max(img_size[:, 1]))
img = paddle.to_tensor(img[:, :, :h, :w])
batch = len(tag)
for i in range(batch):
num, recoder_len = tag[i][0], tag[i][1]
temp_relations.append(
paddle.to_tensor(
relations[i, :num, :num, :], dtype='float32'))
temp_texts.append(
paddle.to_tensor(
texts[i, :num, :recoder_len], dtype='float32'))
temp_gt_bboxes.append(
paddle.to_tensor(
gt_bboxes[i, :num, ...], dtype='float32'))
return img, temp_relations, temp_texts, temp_gt_bboxes
def forward(self, inputs):
img = inputs[0]
relations, texts, gt_bboxes, tag, img_size = inputs[1], inputs[
2], inputs[3], inputs[5], inputs[-1]
img, relations, texts, gt_bboxes = self.pre_process(
img, relations, texts, gt_bboxes, tag, img_size)
x = self.img_feat(img)
boxes, rois_num = self.bbox2roi(gt_bboxes)
feats = paddle.vision.ops.roi_align(
x, boxes, spatial_scale=1.0, output_size=7, boxes_num=rois_num)
feats = self.maxpool(feats).squeeze(-1).squeeze(-1)
return [relations, texts, feats]