forked from SP-2827/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_densenet.py
146 lines (124 loc) · 5.12 KB
/
rec_densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/LBH1024/CAN/models/densenet.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class Bottleneck(nn.Layer):
def __init__(self, nChannels, growthRate, use_dropout):
super(Bottleneck, self).__init__()
interChannels = 4 * growthRate
self.bn1 = nn.BatchNorm2D(interChannels)
self.conv1 = nn.Conv2D(
nChannels, interChannels, kernel_size=1,
bias_attr=None) # Xavier initialization
self.bn2 = nn.BatchNorm2D(growthRate)
self.conv2 = nn.Conv2D(
interChannels, growthRate, kernel_size=3, padding=1,
bias_attr=None) # Xavier initialization
self.use_dropout = use_dropout
self.dropout = nn.Dropout(p=0.2)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
if self.use_dropout:
out = self.dropout(out)
out = F.relu(self.bn2(self.conv2(out)))
if self.use_dropout:
out = self.dropout(out)
out = paddle.concat([x, out], 1)
return out
class SingleLayer(nn.Layer):
def __init__(self, nChannels, growthRate, use_dropout):
super(SingleLayer, self).__init__()
self.bn1 = nn.BatchNorm2D(nChannels)
self.conv1 = nn.Conv2D(
nChannels, growthRate, kernel_size=3, padding=1, bias_attr=False)
self.use_dropout = use_dropout
self.dropout = nn.Dropout(p=0.2)
def forward(self, x):
out = self.conv1(F.relu(x))
if self.use_dropout:
out = self.dropout(out)
out = paddle.concat([x, out], 1)
return out
class Transition(nn.Layer):
def __init__(self, nChannels, out_channels, use_dropout):
super(Transition, self).__init__()
self.bn1 = nn.BatchNorm2D(out_channels)
self.conv1 = nn.Conv2D(
nChannels, out_channels, kernel_size=1, bias_attr=False)
self.use_dropout = use_dropout
self.dropout = nn.Dropout(p=0.2)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
if self.use_dropout:
out = self.dropout(out)
out = F.avg_pool2d(out, 2, ceil_mode=True, exclusive=False)
return out
class DenseNet(nn.Layer):
def __init__(self, growthRate, reduction, bottleneck, use_dropout,
input_channel, **kwargs):
super(DenseNet, self).__init__()
nDenseBlocks = 16
nChannels = 2 * growthRate
self.conv1 = nn.Conv2D(
input_channel,
nChannels,
kernel_size=7,
padding=3,
stride=2,
bias_attr=False)
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks,
bottleneck, use_dropout)
nChannels += nDenseBlocks * growthRate
out_channels = int(math.floor(nChannels * reduction))
self.trans1 = Transition(nChannels, out_channels, use_dropout)
nChannels = out_channels
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks,
bottleneck, use_dropout)
nChannels += nDenseBlocks * growthRate
out_channels = int(math.floor(nChannels * reduction))
self.trans2 = Transition(nChannels, out_channels, use_dropout)
nChannels = out_channels
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks,
bottleneck, use_dropout)
self.out_channels = out_channels
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck,
use_dropout):
layers = []
for i in range(int(nDenseBlocks)):
if bottleneck:
layers.append(Bottleneck(nChannels, growthRate, use_dropout))
else:
layers.append(SingleLayer(nChannels, growthRate, use_dropout))
nChannels += growthRate
return nn.Sequential(*layers)
def forward(self, inputs):
x, x_m, y = inputs
out = self.conv1(x)
out = F.relu(out)
out = F.max_pool2d(out, 2, ceil_mode=True)
out = self.dense1(out)
out = self.trans1(out)
out = self.dense2(out)
out = self.trans2(out)
out = self.dense3(out)
return out, x_m, y