forked from SP-2827/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
east_postprocess.py
executable file
·143 lines (130 loc) · 4.98 KB
/
east_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from .locality_aware_nms import nms_locality
import cv2
import paddle
import os
import sys
class EASTPostProcess(object):
"""
The post process for EAST.
"""
def __init__(self,
score_thresh=0.8,
cover_thresh=0.1,
nms_thresh=0.2,
**kwargs):
self.score_thresh = score_thresh
self.cover_thresh = cover_thresh
self.nms_thresh = nms_thresh
def restore_rectangle_quad(self, origin, geometry):
"""
Restore rectangle from quadrangle.
"""
# quad
origin_concat = np.concatenate(
(origin, origin, origin, origin), axis=1) # (n, 8)
pred_quads = origin_concat - geometry
pred_quads = pred_quads.reshape((-1, 4, 2)) # (n, 4, 2)
return pred_quads
def detect(self,
score_map,
geo_map,
score_thresh=0.8,
cover_thresh=0.1,
nms_thresh=0.2):
"""
restore text boxes from score map and geo map
"""
score_map = score_map[0]
geo_map = np.swapaxes(geo_map, 1, 0)
geo_map = np.swapaxes(geo_map, 1, 2)
# filter the score map
xy_text = np.argwhere(score_map > score_thresh)
if len(xy_text) == 0:
return []
# sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 0])]
#restore quad proposals
text_box_restored = self.restore_rectangle_quad(
xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
try:
import lanms
boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
except:
print(
'you should install lanms by pip3 install lanms-nova to speed up nms_locality'
)
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
if boxes.shape[0] == 0:
return []
# Here we filter some low score boxes by the average score map,
# this is different from the orginal paper.
for i, box in enumerate(boxes):
mask = np.zeros_like(score_map, dtype=np.uint8)
cv2.fillPoly(mask, box[:8].reshape(
(-1, 4, 2)).astype(np.int32) // 4, 1)
boxes[i, 8] = cv2.mean(score_map, mask)[0]
boxes = boxes[boxes[:, 8] > cover_thresh]
return boxes
def sort_poly(self, p):
"""
Sort polygons.
"""
min_axis = np.argmin(np.sum(p, axis=1))
p = p[[min_axis, (min_axis + 1) % 4,\
(min_axis + 2) % 4, (min_axis + 3) % 4]]
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
return p
else:
return p[[0, 3, 2, 1]]
def __call__(self, outs_dict, shape_list):
score_list = outs_dict['f_score']
geo_list = outs_dict['f_geo']
if isinstance(score_list, paddle.Tensor):
score_list = score_list.numpy()
geo_list = geo_list.numpy()
img_num = len(shape_list)
dt_boxes_list = []
for ino in range(img_num):
score = score_list[ino]
geo = geo_list[ino]
boxes = self.detect(
score_map=score,
geo_map=geo,
score_thresh=self.score_thresh,
cover_thresh=self.cover_thresh,
nms_thresh=self.nms_thresh)
boxes_norm = []
if len(boxes) > 0:
h, w = score.shape[1:]
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
for i_box, box in enumerate(boxes):
box = self.sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 \
or np.linalg.norm(box[3] - box[0]) < 5:
continue
boxes_norm.append(box)
dt_boxes_list.append({'points': np.array(boxes_norm)})
return dt_boxes_list