-
Notifications
You must be signed in to change notification settings - Fork 0
/
gan-dc.py
266 lines (198 loc) · 8.84 KB
/
gan-dc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from __future__ import print_function, division
import os
import matplotlib.pyplot as plt
import numpy as np
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
SIZE_X = 128
SIZE_Y = 64
CURRENT_DIR: str = os.getcwd()
DATA_SLICE: int = 1
def get_dataset():
file_path = os.path.join(CURRENT_DIR, 'data', 'train000.npz')
train_data = np.load(file_path)['train_data'][:]
# covert arrays for each pixel
# form [[15], [18], [255]]
# to [15, 18, 255]
train_data_new = []
for data_index in range(len(train_data)):
train_data_new_image = []
for row in range(len(train_data[data_index])):
new_row = [x[0] for x in train_data[data_index][row]]
train_data_new_image.append(new_row)
train_data_new.append(train_data_new_image)
return train_data_new
class DCGAN:
def __init__(self):
# Input shape
self.img_rows = SIZE_Y
self.img_cols = SIZE_X
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
model = Sequential()
quality = 5 # or 10
if quality == 5:
# 16x8
model.add(Dense(128 * 8 * 16, activation='relu', input_dim=self.latent_dim))
model.add(Reshape((8, 16, 128)))
# 32x16
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
# 64x32
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
# 128x64
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation('tanh'))
if quality == 10:
# 16x8
model.add(Dense(128 * 8 * 16, activation='relu', input_dim=self.latent_dim))
model.add(Reshape((8, 16, 128)))
# 32x16
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
# 64x32
model.add(UpSampling2D())
model.add(Conv2D(196, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
# 128x64
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation('tanh'))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
quality = 5 # or 10
if quality == 5:
model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Conv2D(64, kernel_size=3, strides=2, padding='same'))
model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Conv2D(128, kernel_size=3, strides=2, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Conv2D(256, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
if quality == 10:
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Conv2D(128, kernel_size=3, strides=2, padding='same'))
model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Conv2D(196, kernel_size=3, strides=2, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Conv2D(384, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=128, save_interval=50):
# Load the dataset
x_train = np.array(get_dataset())
# Rescale -1 to 1
x_train = x_train / 127.5 - 1.
x_train = np.expand_dims(x_train, axis=3)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half of images
idx = np.random.randint(0, x_train.shape[0], batch_size)
imgs = x_train[idx]
# Sample noise and generate a batch of new images
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# Train the discriminator (real classified as ones and generated as zeros)
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator (wants discriminator to mistake images as real)
g_loss = self.combined.train_on_batch(noise, valid)
# If at save interval => save generated image samples
if epoch % save_interval == 0:
print('%d [D loss: %f, acc.: %.2f%%] [G loss: %f]' % (epoch, d_loss[0], 100 * d_loss[1], g_loss))
# Plot the progress
self.save_imgs(epoch)
def save_imgs(self, epoch):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')
axs[i, j].axis('off')
cnt += 1
fig.savefig('images/panorama_%d.png' % epoch)
plt.close()
if __name__ == '__main__':
dcgan = DCGAN()
dcgan.train(epochs=100001, batch_size=32, save_interval=500)