Skip to content

DonDebonair/slack-machine

Folders and files

NameName
Last commit message
Last commit date
Dec 20, 2024
Nov 26, 2024
Nov 26, 2024
Nov 24, 2024
Nov 24, 2024
Aug 13, 2022
Nov 24, 2024
Nov 22, 2024
Nov 16, 2024
Nov 24, 2024
Jul 22, 2020
Nov 25, 2024
Nov 26, 2024
Nov 24, 2024
May 25, 2024
Feb 3, 2025
Nov 24, 2024
Nov 24, 2024
Feb 3, 2025

Repository files navigation

Slack Machine

Join the chat at Slack image image image CI Status image

Slack Machine is a simple, yet powerful and extendable Slack bot framework. More than just a bot, Slack Machine is a framework that helps you develop your Slack workspace into a ChatOps powerhouse. Slack Machine is built with an intuitive plugin system that lets you build bots quickly, but also allows for easy code organization. A plugin can look as simple as this:

from machine.plugins.base import MachineBasePlugin
from machine.plugins.message import Message
from machine.plugins.decorators import respond_to


class DeploymentPlugin(MachineBasePlugin):
    """Deployments"""

    @respond_to(r"deploy (?P<application>\w+) to (?P<environment>\w+)")
    async def deploy(self, msg: Message, application, environment):
        """deploy <application> <environment>: deploy application to target environment"""
        await msg.say(f"Deploying {application} to {environment}")

Breaking Changes

Dropped support for Python 3.8 (v0.38.0)

As of v0.38.0, support for Python 3.8 has been dropped. Python 3.8 has reached end-of-life on 2024-10-07.

Features

  • Get started with mininal configuration
  • Built on top of the Slack Events API for smoothly responding to events in semi real-time. Uses Socket Mode so your bot doesn't need to be exposed to the internet!
  • Support for rich interactions using the Slack Web API
  • High-level API for maximum convenience when building plugins
  • Low-level API for maximum flexibility
  • Built on top of AsyncIO to ensure good performance by handling communication with Slack concurrently

Plugin API features:

  • Listen and respond to any regular expression
  • Respond to Slash Commands
  • Capture parts of messages to use as variables in your functions
  • Respond to messages in channels, groups and direct message conversations
  • Respond with reactions
  • Respond in threads
  • Respond with ephemeral messages
  • Send DMs to any user
  • Support for blocks
  • Support for message attachments [Legacy 🏚]
  • Support for interactive elements
  • Support for modals
  • Listen and respond to any Slack event supported by the Events API
  • Store and retrieve any kind of data in persistent storage (currently Redis, DynamoDB, SQLite and in-memory storage are supported)
  • Schedule actions and messages
  • Emit and listen for events
  • Help texts for Plugins

Coming Soon

  • Support for shortcuts
  • ... and much more

Installation

You can add Slack Machine to your uv project by running:

uv add slack-machine

or add it to your Poetry project:

poetry add slack-machine

Lastly, you can install it using pip (not recommended):

$ pip install slack-machine

It is strongly recommended that you install slack-machine inside a virtual environment!

Usage

  1. Create a directory for your Slack Machine bot: mkdir my-slack-bot && cd my-slack-bot

  2. Add a local_settings.py file to your bot directory: touch local_settings.py

  3. Create a new app in Slack: https://api.slack.com/apps

  4. Choose to create an app from an App manifest

  5. Copy/paste the following manifest: manifest.yaml

  6. Add the Slack App and Bot tokens to your local_settings.py like this:

    SLACK_APP_TOKEN = "xapp-my-app-token"
    SLACK_BOT_TOKEN = "xoxb-my-bot-token"
    
  7. Start the bot with slack-machine

  8. ...

  9. Profit!

Documentation

You can find the documentation for Slack Machine here: https://dondebonair.github.io/slack-machine/

Go read it to learn how to properly configure Slack Machine, write plugins, and more!

There is also an example plugin that shows off many of the features of Slack Machine: Slack Machine Kitchensink Plugin