-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvtab.py
139 lines (122 loc) · 4.56 KB
/
vtab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch.utils.data as data
from PIL import Image
import os
import os.path
from torchvision import transforms
import torch
_DATASET_NAME = (
'cifar',
'caltech101',
'dtd',
'oxford_flowers102',
'oxford_iiit_pet',
'svhn',
'sun397',
'patch_camelyon',
'eurosat',
'resisc45',
'diabetic_retinopathy',
'clevr_count',
'clevr_dist',
'dmlab',
'kitti',
'dsprites_loc',
'dsprites_ori',
'smallnorb_azi',
'smallnorb_ele',
'food101',
'fgvc_aircraft',
'oxford_flowers',
'oxford_pets',
'standford_cars',
'Imagenet'
)
_CLASSES_NUM = (100, 102, 47, 102, 37, 10, 397, 2, 10, 45, 5, 8, 6, 6, 4, 16, 16, 18, 9, 101, 100, 102, 37, 196, 1000)
def get_classes_num(dataset_name):
dict_ = {name: num for name, num in zip(_DATASET_NAME, _CLASSES_NUM)}
return dict_[dataset_name]
def default_loader(path):
return Image.open(path).convert('RGB')
def default_flist_reader(flist):
"""
flist format: impath label\nimpath label\n ...(same to caffe's filelist)
"""
imlist = []
with open(flist, 'r') as rf:
for line in rf.readlines():
impath, imlabel = line.strip().split()
imlist.append((impath, int(imlabel)))
return imlist
class ImageFilelist(data.Dataset):
def __init__(self, root, flist, transform=None, target_transform=None,
flist_reader=default_flist_reader, loader=default_loader):
self.root = root
self.imlist = flist_reader(flist)
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
impath, target = self.imlist[index]
img = self.loader(os.path.join(self.root, impath))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imlist)
def get_data(name, evaluate=True, batch_size=64):
root = './data/' + name
transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
if evaluate:
train_loader = torch.utils.data.DataLoader(
ImageFilelist(root=root, flist=root + "/train800val200.txt",
transform=transform),
batch_size=batch_size, shuffle=True, drop_last=True,
num_workers=4, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
ImageFilelist(root=root, flist=root + "/test.txt",
transform=transform),
batch_size=256, shuffle=False,
num_workers=4, pin_memory=True)
else:
train_loader = torch.utils.data.DataLoader(
ImageFilelist(root=root, flist=root + "/train800.txt",
transform=transform),
batch_size=batch_size, shuffle=True, drop_last=True,
num_workers=4, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
ImageFilelist(root=root, flist=root + "/val200.txt",
transform=transform),
batch_size=256, shuffle=False,
num_workers=4, pin_memory=True)
return train_loader, val_loader
def get_few_shot_data(name, evaluate=True, batch_size=64):
root = './data/' + name + ''
flist_root = './data/few-shot/' + name + '/annotations/'
filenames = []
for i in [1,2,4,8,16]:
for j in [0,1,2]:
filenames.append('train_meta.list.num_shot_'+str(i)+'.seed_'+str(j))
transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
if evaluate:
train_loaders = []
for filename in filenames:
train_loader = torch.utils.data.DataLoader(
ImageFilelist(root=root, flist=flist_root + filename,
transform=transform),
batch_size=batch_size, shuffle=True, drop_last=True,
num_workers=4, pin_memory=True)
train_loaders.append([filename,train_loader])
val_loader = torch.utils.data.DataLoader(
ImageFilelist(root=root, flist=flist_root + "val_meta.list",
transform=transform),
batch_size=256, shuffle=False,
num_workers=4, pin_memory=True)
return train_loaders,val_loader