-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset_loader.py
658 lines (585 loc) · 26.7 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import random
import datasets
import tqdm
import pandas as pd
import re
import json
import numpy as np
import random
import os
# you can add more datasets here and write your own dataset parsing function
DATASETS = ['TruthfulQA', 'SQuAD1', 'NarrativeQA', 'Mixcase', 'All']
def process_spaces(text):
return text.replace(
' ,', ',').replace(
' .', '.').replace(
' ?', '?').replace(
' !', '!').replace(
' ;', ';').replace(
' \'', '\'').replace(
' ’ ', '\'').replace(
' :', ':').replace(
'<newline>', '\n').replace(
'`` ', '"').replace(
' \'\'', '"').replace(
'\'\'', '"').replace(
'.. ', '... ').replace(
' )', ')').replace(
'( ', '(').replace(
' n\'t', 'n\'t').replace(
' i ', ' I ').replace(
' i\'', ' I\'').replace(
'\\\'', '\'').replace(
'\n ', '\n').strip()
def process_text_truthfulqa_adv(text):
if "I am sorry" in text:
first_period = text.index('.')
start_idx = first_period + 2
text = text[start_idx:]
if "as an AI language model" in text or "As an AI language model" in text:
first_period = text.index('.')
start_idx = first_period + 2
text = text[start_idx:]
return text
def process_dataset(dataset_name, MGT_only_GPT, data_new):
"""
Process the dataset by loading the data, appending it to the existing data, and returning the count of HWT and MGT data.
Args:
dataset_name (str): The name of the dataset.
MGT_only_GPT (bool): Flag indicating whether to load only MGT generated by GPT-family.
data_new (dict): The dictionary containing the existing data.
Returns:
tuple: A tuple containing the count of HWT data and MGT data.
"""
LLM_data, data_hwt_cnt, data_mgt_cnt = load_dataset(dataset_name, MGT_only_GPT)
data_new['train']['text'] += LLM_data['text']
data_new['train']['label'] += LLM_data['label']
return data_hwt_cnt, data_mgt_cnt
def load_All(filename1, filename2: str = None, MGT_only_GPT: bool = False, train_threshold: int = 10000, mixcase_threshold: float = 0.8, test_only: bool = False, no_auc: bool = False, train_with_mixcase: bool = False, seed: int = 0, three_classes: bool = False, mixcase_as_mgt:bool=False):
"""
Load and process datasets for training and testing.
Args:
filename1 (str): The filename of the first dataset.
filename2 (str, optional): The filename of the second dataset. Defaults to None.
MGT_only_GPT (bool, optional): Flag indicating whether to use MGT generated by GPT-family. Defaults to False.
train_threshold (int, optional): The threshold for the number of training samples. Defaults to 10000.
mixcase_threshold (float, optional): The threshold for mixcase data. Defaults to 0.8.
test_only (bool, optional): Flag indicating whether to load test data only. Defaults to False.
no_auc (bool, optional): Flag indicating whether to exclude AUC calculation. Defaults to False.
train_with_mixcase (bool, optional): Flag indicating whether to train with mixcase data. Defaults to False.
seed (int, optional): The random seed. Defaults to 0.
three_classes (bool, optional): Flag indicating whether to use three classes. Defaults to False.
mixcase_as_mgt (bool, optional): Flag indicating whether to treat mixcase data as MGT. Defaults to False.
Returns:
dict: A dictionary containing the loaded and processed data.
"""
data_new = {
'train': {
'text': [],
'label': [],
},
'test': {
'text': [],
'label': [],
}
}
hwt_cnt, mgt_cnt = 0, 0
# Process each dataset
for dataset in ['SQuAD1', 'TruthfulQA', 'NarrativeQA']:
data_hwt_cnt, data_mgt_cnt = process_dataset(dataset, MGT_only_GPT, data_new)
hwt_cnt += data_hwt_cnt
mgt_cnt += data_mgt_cnt
# Process HWT data
HWT_data = load_HWT(mgt_cnt - hwt_cnt)
data_new['train']['text'] += HWT_data['text']
data_new['train']['label'] += HWT_data['label'].tolist()
# Shuffle and trim data
new_text, new_label = shuffle_and_trim_data(data_new, seed, train_threshold)
data_new['train']['text'] = new_text
data_new['train']['label'] = new_label
# Process Mixcase data
if MGT_only_GPT:
mixcase_data = process_mixcase_data(filename1, filename2, no_auc, mixcase_threshold, train_with_mixcase = True, seed=0, three_classes=False, data_new=data_new, test_only=test_only, mgt_only_gpt=MGT_only_GPT, mixcase_as_mgt=mixcase_as_mgt)
data_new['test']['text'] += mixcase_data['test']['text']
data_new['test']['label'] += mixcase_data['test']['label']
if train_with_mixcase:
data_new['train']['text'] += mixcase_data['train']['text']
data_new['train']['label'] += mixcase_data['train']['label']
else:
mixcase_data = process_mixcase_data(filename1, filename2, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, data_new, test_only, mixcase_as_mgt=mixcase_as_mgt)
data_new['train']['text'] += mixcase_data['train']['text']
data_new['test']['text'] += mixcase_data['test']['text']
data_new['train']['label'] += mixcase_data['train']['label']
data_new['test']['label'] += mixcase_data['test']['label']
if test_only:
data_new['train']['text'] = []
data_new['train']['label'] = []
else:
combined = list(zip(data_new['train']['text'], data_new['train']['label']))
random.seed(seed)
random.shuffle(combined)
data_new['train']['text'], data_new['train']['label'] = zip(*combined)
return data_new
def shuffle_and_trim_data(data_new, seed, train_threshold):
"""
Shuffle and trim the data in data_new.
Args:
data_new (dict): The input data dictionary.
seed (int): The seed value for random shuffling. If None, the default seed value is 0.
train_threshold (int): The maximum number of data points to include in the trimmed data.
Returns:
tuple: A tuple containing the shuffled and trimmed text and label lists.
"""
new_text = []
new_label = []
index_list = list(range(len(data_new['train']['label'])))
random.seed(seed if seed is not None else 0)
random.shuffle(index_list)
for i in index_list:
new_text.append(data_new['train']['text'][i])
new_label.append(data_new['train']['label'][i])
return new_text[:train_threshold], new_label[:train_threshold]
def process_mixcase_data(filename1, filename2, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, data_new, test_only, mgt_only_gpt:bool=False, mixcase_as_mgt:bool=False):
"""
Process the Mixcase data based on the given parameters.
Args:
filename1 (str): The filename for the first dataset.
filename2 (str): The filename for the second dataset.
no_auc (bool): Flag indicating whether to exclude AUC calculations.
mixcase_threshold (float): The threshold for Mixcase data.
train_with_mixcase (bool): Flag indicating whether to train with Mixcase data.
seed (int): The seed value for randomization.
three_classes (bool): Flag indicating whether to use three classes.
data_new (dict): The dictionary to store the processed data.
test_only (bool): Flag indicating whether to only perform testing.
mgt_only_gpt (bool, optional): Flag indicating whether to use MGT generated by GPT-family.. Defaults to False.
mixcase_as_mgt (bool, optional): Flag indicating whether to treat Mixcase as MGT. Defaults to False.
Returns:
dict: The processed Mixcase data.
"""
data_new = {
'train': {
'text': [],
'label': [],
},
'test': {
'text': [],
'label': [],
}
}
if filename2 is None:
if not train_with_mixcase:
# Ex1, train with pure MGT and HWT, then test on Mixcase in binary classification setting.
Mixcase_data = load_Mixcase(filename=filename1, no_auc=no_auc, train_with_mixcase=train_with_mixcase, mixcase_as_mgt=mixcase_as_mgt)
data_new['test']['text'] += Mixcase_data['text']
data_new['test']['label'] += Mixcase_data['label']
else:
# Load and process multiple files for Mixcase data
load_and_process_multiple_mixcase_files(data_new, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, mgt_only_gpt=mgt_only_gpt, mixcase_as_mgt=mixcase_as_mgt)
Test_Mixcase_data = load_Mixcase(filename1, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, mixcase_as_mgt=mixcase_as_mgt)
data_new['test']['text'] += Test_Mixcase_data['test']['text']
data_new['test']['label'] += Test_Mixcase_data['test']['label']
else:
# Ex3, Transfer learning setting, train on operation of filename1 and evaluate on filename2.
Train_Mixcase_data = load_Mixcase(filename1, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, mixcase_as_mgt=mixcase_as_mgt)
data_new['train']['text'] += Train_Mixcase_data['train']['mixcase']['text']
data_new['train']['label'] += Train_Mixcase_data['train']['mixcase']['label']
data_new['train']['text'] += Train_Mixcase_data['train']['other']['text']
data_new['train']['label'] += Train_Mixcase_data['train']['other']['label']
Test_Mixcase_data = load_Mixcase(filename2, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, mixcase_as_mgt=mixcase_as_mgt)
data_new['test']['text'] += Test_Mixcase_data['test']['text']
data_new['test']['label'] += Test_Mixcase_data['test']['label']
if test_only:
# set training data to none for quicker inference
data_new['train']['text'] = []
data_new['train']['label'] = []
return data_new
def load_and_process_multiple_mixcase_files(data_new, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes, mgt_only_gpt, mixcase_as_mgt):
"""
Load and process multiple Mixcase files.
Args:
data_new (dict): The dictionary containing the data.
no_auc (bool): Flag indicating whether to exclude AUC data.
mixcase_threshold (int): The threshold for including Mixcase data.
train_with_mixcase (bool): Flag indicating whether to train with Mixcase data.
seed (int): The random seed.
three_classes (bool): Flag indicating whether to use three classes.
mgt_only_gpt (bool): Flag indicating whether to use MGT generated by GPT-family.
mixcase_as_mgt (bool): Flag indicating whether to treat Mixcase data as MGT data.
Returns:
None
"""
file_paths = []
for root, dirs, files in os.walk("/media/ssd/cdp/Mixcase/Mixcase/data/mixcase_data"):
for file in files:
if file.endswith('.json'):
if mgt_only_gpt:
if "GPT" in file:
file_paths.append(os.path.join(root, file))
file_paths.append(os.path.join(root, file))
for file_path in file_paths:
if mixcase_threshold != 0:
Mixcase_data = load_Mixcase(file_path, no_auc, mixcase_threshold, train_with_mixcase, seed, three_classes=three_classes, mixcase_as_mgt=mixcase_as_mgt)
if Mixcase_data['train']['other']['text'][0] in data_new['train']['text']:
data_new['train']['text'] += Mixcase_data['train']['mixcase']['text']
data_new['train']['label'] += Mixcase_data['train']['mixcase']['label']
else:
data_new['train']['text'] += Mixcase_data['train']['mixcase']['text']
data_new['train']['label'] += Mixcase_data['train']['mixcase']['label']
data_new['train']['text'] += Mixcase_data['train']['other']['text']
data_new['train']['label'] += Mixcase_data['train']['other']['label']
print(f"The size of MixText in training set: {len(data_new['train']['label'])}")
# Optionally shuffle the data
new_text, new_label = shuffle_and_trim_data(data_new, seed, len(data_new['train']['label']))
data_new['train']['text'] = new_text
data_new['train']['label'] = new_label
def load_HWT(HWT_size, seed:int=0):
"""
Load data for the HWT (High Word Tolerance) dataset.
Parameters:
- HWT_size (int): The desired size of the dataset.
- seed (int): The seed value for randomization (default is 0).
Returns:
- data_new (dict): A dictionary containing the loaded data with the following keys:
- 'text': A list of processed sentences.
- 'label': A numpy array of zeros with a length equal to the minimum of HWT_size and the total number of loaded sentences.
"""
root = './data/pure_processed_HWT/'
file_names = ['blog.json', 'game.json', 'News.json', 'paper_abstract.json', 'talks.json', 'transcript.json', 'email.json']
data_sum = []
for name in file_names:
with open(root+name, 'r') as f:
for line in f:
# 解析每一行为JSON
json_object = json.loads(line.strip())
processed_sentence = process_spaces(json_object['sentence'])
if len(processed_sentence.split()) > 30 and len(processed_sentence.split()) < 120 and len(processed_sentence) < 2000:
data_sum.append(processed_sentence)
index_list = list(range(len(data_sum)))
random.seed(seed)
random.shuffle(index_list)
data_new = {'text': [],
'label': np.zeros(min(HWT_size,len(data_sum)), dtype=int)}
for i in range(min(HWT_size,len(data_sum))):
index = random.randint(50, 120)
data_new['text'].append(' '.join(process_spaces(data_sum[index_list[i]]).split()[:min(index,len(data_sum[index_list[i]].split()))]))
return data_new
def load_Mixcase(filename, no_auc:bool=False, mixcase_threshold: float=0.8, train_with_mixcase:bool = False, seed:int=None, three_classes:bool=False, mixcase_as_mgt:bool=False):
"""
Load Mixcase dataset from a JSON file.
Args:
filename (str): The name of the JSON file.
no_auc (bool): Flag indicating whether to exclude samples for AUC calculation.
mixcase_threshold (float, optional): The threshold for determining the number of mixcase samples in the training set. Defaults to 0.8.
train_with_mixcase (bool, optional): Flag indicating whether to train with mixcase samples. Defaults to False.
seed (int, optional): The seed value for random shuffling. Defaults to None.
three_classes (bool, optional): Flag indicating whether to use three classes for classification. Defaults to False.
mixcase_as_mgt (bool, optional): Flag indicating whether to treat mixcase samples as MGT samples. Defaults to False.
Returns:
dict: A dictionary containing the loaded dataset.
"""
with open(os.path.join("./data/MixSet",filename)) as file:
f = json.load(file)
mgt = []
hwt = []
for key in f[0].keys():
if "output" in str(key):
real_key = key
if "HWT_sentence" in f[0].keys():
test_MGT = True
for i in f:
# if len(i['HWT_sentence'].split()) > 1 and len(i[real_key].split()) > 1 and len(i[real_key]) < 2000:
mgt.append(i[real_key])
hwt.append(i['HWT_sentence'])
else:
if not mixcase_as_mgt:
test_MGT = False
for i in f:
mgt.append(i['MGT_sentence'])
hwt.append(i[real_key])
else:
test_MGT = True
for i in f:
mgt.append(i[real_key])
with open(os.path.join("../Mixcase/data/mixcase_data","2llama_polish_token.json")) as file:
f2 = json.load(file)
for i in f2:
hwt.append(i['HWT_sentence'])
print(f"Test_MGT:{test_MGT}")
index_list = list(range(len(mgt) + len(hwt)))
total_num = len(index_list)
if not train_with_mixcase:
data_new = {
'text': [],
'label': []
}
if test_MGT:
for i in tqdm.tqdm(range(total_num), desc="parsing data"):
if index_list[i] < len(mgt):
data_new['text'].append(
process_spaces(mgt[index_list[i]]))
data_new['label'].append(1)
elif not no_auc:
index = index_list[i] - len(mgt)
data_new['text'].append(
process_spaces(hwt[index]))
data_new['label'].append(0)
else:
for i in tqdm.tqdm(range(total_num), desc="parsing data"):
if index_list[i] < len(hwt):
data_new['text'].append(
process_spaces(hwt[index_list[i]]))
data_new['label'].append(0)
elif not no_auc:
index = index_list[i] - len(hwt)
data_new['text'].append(
process_spaces(mgt[index]))
data_new['label'].append(1)
return data_new
else:
data_new = {
'train': {
'mixcase':{
'text': [],
'label': [],
},
'other':{
'text': [],
'label': [],
}
},
'test': {
'text': [],
'label': [],
}
}
train_mgt = mgt[:250]
test_mgt = mgt[250:]
train_hwt = hwt[:250]
test_hwt = hwt[250:]
index_list = list(range(250))
random.seed(seed)
random.shuffle(index_list)
if three_classes:
if test_MGT:
train_mixcase = train_mgt
test_mixcase = test_mgt
train_pure = train_hwt
test_pure = test_hwt
label = 0
else:
train_mixcase = train_hwt
test_mixcase = test_hwt
train_pure = train_mgt
test_pure = test_mgt
label = 1
for i in tqdm.tqdm(range(int(len(index_list) * mixcase_threshold)), desc="parsing data"):
data_new['train']['mixcase']['text'].append(
process_spaces(train_mixcase[index_list[i]]))
data_new['train']['mixcase']['label'].append(2)
data_new['train']['other']['text'].append(
process_spaces(train_pure[index_list[i]]))
data_new['train']['other']['label'].append(label)
for i in range(len(test_pure)):
data_new['test']['text'].append(process_spaces(test_mixcase[i]))
data_new['test']['label'].append(2)
data_new['test']['text'].append(process_spaces(test_pure[i]))
data_new['test']['label'].append(label)
else:
for i in tqdm.tqdm(range(int(len(index_list) * mixcase_threshold)), desc="parsing data"):
if test_MGT:
data_new['train']['mixcase']['text'].append(
process_spaces(train_mgt[index_list[i]]))
data_new['train']['mixcase']['label'].append(1)
data_new['train']['other']['text'].append(
process_spaces(train_hwt[index_list[i]]))
data_new['train']['other']['label'].append(0)
else:
data_new['train']['other']['text'].append(
process_spaces(train_mgt[index_list[i]]))
data_new['train']['other']['label'].append(1)
data_new['train']['mixcase']['text'].append(
process_spaces(train_hwt[index_list[i]]))
data_new['train']['mixcase']['label'].append(0)
for i in range(len(test_mgt)):
data_new['test']['text'].append(process_spaces(test_mgt[i]))
data_new['test']['label'].append(1)
data_new['test']['text'].append(process_spaces(test_hwt[i]))
data_new['test']['label'].append(0)
return data_new
def load_dataset(dataset_name, MGT_only_GPT):
mgt = []
hwt = []
if dataset_name == 'TruthfulQA':
f = pd.read_csv("./data/MGT_datasets/modified_TruthfulQA_LLMs.csv")
a_human = f['Best Answer'].tolist()
for i in range(len(a_human)):
processed_human = process_spaces(a_human[i])
if len(processed_human.split()) > 50 and len(processed_human) < 2000:
hwt.append(processed_human)
elif dataset_name == 'SQuAD1':
f = pd.read_csv("./data/MGT_datasets/modified_SQuAD1_LLMs.csv")
a_human = [eval(_)['text'][0] for _ in f['answers'].tolist()]
for i in range(len(a_human)):
processed_human = process_spaces(a_human[i])
if len(processed_human.split()) > 50 and len(processed_human) < 2000:
hwt.append(processed_human)
elif dataset_name == 'NarrativeQA':
f = pd.read_csv("./data/MGT_datasets/modified_NarrativeQA_LLMs.csv")
a_human = f['answers'].tolist()
a_human = [_.split(";")[0] for _ in a_human]
for i in range(len(a_human)):
processed_human = process_spaces(a_human[i])
if len(processed_human.split()) > 50 and len(processed_human) < 2000:
hwt.append(processed_human)
if MGT_only_GPT:
# Ex3 LLM-wise transfer, only train with MGT generated by GPT-family
LLM_set = ['ChatGPT', 'ChatGPT-turbo', 'GPT4']
else:
LLM_set = ['ChatGPT', 'BloomZ', 'ChatGLM', 'Dolly', 'ChatGPT-turbo', 'GPT4', 'StableLM']
for detectLLM in LLM_set:
a_chat = f[f'{detectLLM}_answer'].fillna("").tolist()
for i in range(len(a_chat)):
processed_chat = process_spaces(a_chat[i])
if len(processed_chat.split()) > 50 and len(processed_chat) < 2000:
mgt.append(processed_chat)
data_new = {
'text': [],
'label': [],
}
index_list = list(range(len(mgt) + len(hwt)))
random.seed(0)
random.shuffle(index_list)
mgt_cnt = 0
hwt_cnt = 0
total_num = len(index_list)
for i in tqdm.tqdm(range(total_num), desc="parsing data"):
if index_list[i] < len(mgt):
data_new['text'].append(
mgt[index_list[i]])
data_new['label'].append(1)
mgt_cnt += 1
else:
index = index_list[i] - len(mgt)
data_new['text'].append(
hwt[index])
data_new['label'].append(0)
hwt_cnt += 1
return data_new, hwt_cnt, mgt_cnt
def load_TruthfulQA(detectLLM):
f = pd.read_csv("datasets/TruthfulQA_LLMs.csv")
q = f['Question'].tolist()
a_human = f['Best Answer'].tolist()
a_chat = f[f'{detectLLM}_answer'].fillna("").tolist()
c = f['Category'].tolist()
res = []
for i in range(len(q)):
if len(a_human[i].split()) > 1 and len(a_chat[i].split()) > 1 and len(a_chat[i]) < 2000:
res.append([q[i], a_human[i], a_chat[i], c[i]])
data_new = {
'train': {
'text': [],
'label': [],
'category': [],
},
'test': {
'text': [],
'label': [],
'category': [],
}
}
index_list = list(range(len(res)))
random.seed(0)
random.shuffle(index_list)
total_num = len(res)
for i in tqdm.tqdm(range(total_num), desc="parsing data"):
if i < total_num * 0.8:
data_partition = 'train'
else:
data_partition = 'test'
data_new[data_partition]['text'].append(
process_spaces(res[index_list[i]][1]))
data_new[data_partition]['label'].append(0)
data_new[data_partition]['text'].append(
process_spaces(res[index_list[i]][2]))
data_new[data_partition]['label'].append(1)
data_new[data_partition]['category'].append(res[index_list[i]][3])
data_new[data_partition]['category'].append(res[index_list[i]][3])
return data_new
def load_SQuAD1(detectLLM):
f = pd.read_csv("datasets/SQuAD1_LLMs.csv")
q = f['Question'].tolist()
a_human = [eval(_)['text'][0] for _ in f['answers'].tolist()]
a_chat = f[f'{detectLLM}_answer'].fillna("").tolist()
res = []
for i in range(len(q)):
if len(a_human[i].split()) > 1 and len(a_chat[i].split()) > 1:
res.append([q[i], a_human[i], a_chat[i]])
data_new = {
'train': {
'text': [],
'label': [],
},
'test': {
'text': [],
'label': [],
}
}
index_list = list(range(len(res)))
random.seed(0)
random.shuffle(index_list)
total_num = len(res)
for i in tqdm.tqdm(range(total_num), desc="parsing data"):
if i < total_num * 0.8:
data_partition = 'train'
else:
data_partition = 'test'
data_new[data_partition]['text'].append(
process_spaces(res[index_list[i]][1]))
data_new[data_partition]['label'].append(0)
data_new[data_partition]['text'].append(
process_spaces(res[index_list[i]][2]))
data_new[data_partition]['label'].append(1)
return data_new
def load_NarrativeQA(detectLLM):
f = pd.read_csv("datasets/NarrativeQA_LLMs.csv")
q = f['Question'].tolist()
a_human = f['answers'].tolist()
a_human = [_.split(";")[0] for _ in a_human]
a_chat = f[f'{detectLLM}_answer'].fillna("").tolist()
res = []
for i in range(len(q)):
if len(a_human[i].split()) > 1 and len(a_chat[i].split()) > 1 and len(a_human[i].split()) < 150 and len(a_chat[i].split()) < 150:
res.append([q[i], a_human[i], a_chat[i]])
data_new = {
'train': {
'text': [],
'label': [],
},
'test': {
'text': [],
'label': [],
}
}
index_list = list(range(len(res)))
random.seed(0)
random.shuffle(index_list)
total_num = len(res)
for i in tqdm.tqdm(range(total_num), desc="parsing data"):
if i < total_num * 0.8:
data_partition = 'train'
else:
data_partition = 'test'
data_new[data_partition]['text'].append(
process_spaces(res[index_list[i]][1]))
data_new[data_partition]['label'].append(0)
data_new[data_partition]['text'].append(
process_spaces(res[index_list[i]][2]))
data_new[data_partition]['label'].append(1)
return data_new
def load(name, **kwargs):
if name in DATASETS:
load_fn = globals()[f'load_{name}']
return load_fn(**kwargs)
else:
raise ValueError(f'Unknown dataset {name}')