-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
120 lines (97 loc) · 3.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# -*- coding:utf-8 -*-
import cv2
import random
import time
from train import Model
from input import resize_with_pad, write_image
from input import IMAGE_SIZE, GRAY_MODE
# from image_show import show_image
DEBUG_OUTPUT = True
CropPadding = 10
cascade_path = "F:/Software/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml"
def extendFaceRect(rect):
[x, y, w, h] = rect
if y > CropPadding: y = y - CropPadding
else: y = 0
h += 2*CropPadding
if x > CropPadding: x = x - CropPadding
else: x = 0
w += 2*CropPadding
return [x, y, w, h]
if __name__ == '__main__':
cap = cv2.VideoCapture(0)
model = Model()
model.load()
# カスケード分類器の特徴量を取得する
# Get Cascade Classifier
cascade = cv2.CascadeClassifier(cascade_path)
isme=0
notme=0
while True:
_, frame = cap.read()
# グレースケール変換
# To gray image
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 物体認識(顔認識)の実行
# Recognize faces
facerect = cascade.detectMultiScale(
frame_gray,
scaleFactor=1.3,
minNeighbors=3,
minSize=(10, 10),
flags=cv2.CASCADE_SCALE_IMAGE
)
#facerect = cascade.detectMultiScale(frame_gray, scaleFactor=1.01, minNeighbors=3, minSize=(3, 3))
if len(facerect) > 0:
print('face detected')
color = (255, 255, 255) # 白
for (x, y, w, h) in facerect:
[x, y, w, h] = extendFaceRect([x, y, w, h])
buffer = frame.copy()
cv2.rectangle(buffer, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('Recognizing', buffer)
for rect in facerect:
# 検出した顔を囲む矩形の作成
#cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), color, thickness=2)
# x, y = rect[0:2]
# width, height = rect[2:4]
[x, y, width, height] = extendFaceRect(rect)
# Crop the face
if GRAY_MODE == True:
img_predict = frame_gray[y: y + height, x: x + width]
else:
img_predict = frame[y: y + height, x: x + width]
# frame = cv2.cvtColor(frame_gray, cv2.COLOR_GRAY2BGR)
if GRAY_MODE == True:
result = model.predict(img_predict, img_channels=1)
else:
result = model.predict(img_predict)
if DEBUG_OUTPUT == True:
outimg = frame[y: y + height, x: x + width]
if result == 0:
write_image('./output/isme/' + str(random.randint(1,999999)) + '.jpg', outimg)
else:
write_image('./output/notme/' + str(random.randint(1,999999)) + '.jpg', outimg)
#if result[0] > 0.70 :
# result = 0
#else:
# result = 1
if result == 0: # Is me
print("It's you! Donny!")
isme+=1
else:
print('Not Donny.')
notme+=1
print('isme', isme, 'notme', notme)
# Wait for input
if cv2.waitKey(100) & 0xFF == ord('q'):
break
#10msecキー入力待ち
#k = cv2.waitKey(0)
#Escキーを押されたら終了
#if k == 27:
# break
#キャプチャを終了
# Stop Recognize
cap.release()
cv2.destroyAllWindows()