Install MMDetection v2.28.1.
- Check mmcv-full version depending on your pytorch version.
# Compatible with PyTorch 1.12.1 + CUDA 11.6
pip install timm==0.6.12
pip install -U openmim
mim install mmcv-full==1.6.0
python setup.py develop
Prepare COCO 2017 according to the guidelines in MMDetection. If you have interest in this dataset, refer to below links:
To evaluate SPANet-S24 + RetinaNet on a single node with 4 GPUs run:
# evaluation by default
FORK_LAST3=1 ./tools/dist_test.sh local_configs/fpn_spanet/S24/retinanet_spanet_s24_fpn_1x_coco.py /path/to/checkpoint_file 4 --out results.pkl --eval bbox
# simple usage
bash run_eval.sh
To evaluate SPANet-S24 + RetinaNet on a single node with 4 GPUs run:
# evaluation by default
./tools/dist_test.sh local_configs/fpn_spanet/S24/mask_rcnn_spanet_s24_fpn_1x_coco.py /path/to/checkpoint_file 4 --out results.pkl --eval bbox segm
# simple usage
bash run_eval.sh
To train SPANet-S24 + RetinaNet on a single node with 4 GPUs run:
# training by default
FORK_LAST3=1 ./tools/dist_train.sh local_configs/fpn_spanet/S24/retinanet_spanet_s24_fpn_1x_coco.py 4
# simple usage
bash run_train.sh
To train SPANet-S24 + Mask R-CNN on a single node with 4 GPUs run:
# training by default
./tools/dist_train.sh local_configs/fpn_spanet/S24/mask_rcnn_spanet_s24_fpn_1x_coco.py 4
# simple usage
bash run_train.sh
To calculate MACs for a model, run:
python tools/analysis_tools/get_flops.py /path/to/config
# simple usage
bash get_flops.sh
@article{yun2023spanet,
title={SPANet},
author={Yun, Guhnoo},
journal={arXiv preprint arXiv:xxxx.xxxxx},
year={2023}
}
Our implementation is mainly based on the following codebases. We gratefully thank the authors for their wonderful works.