forked from MColbrook/DMD-Multiverse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNoisy_cylinder_wake_example.m
126 lines (108 loc) · 3.15 KB
/
Noisy_cylinder_wake_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
clear
close all
addpath(genpath('./data_sets'))
addpath(genpath('./routines'))
addpath(genpath('./saved_data_from_runs'))
%% UNCOMMENT TO RUN CODE
% % load('Cylinder_wake_data.mat')
% % DATA = DATA(1:160000,:);
% % DATA = (DATA- mean(DATA,2) )./std(DATA,[],2);%
% % %% Set the parameters
% % Mvec = 24*(5:41);
% % sigma = 0.4;
% % Ns = 1;%100;
% % r = 11; % rank
% %
% % %% Compute Error
% % rng(1)
% % ct = 1;
% % X = DATA(:,1:max(Mvec));
% % Y = DATA(:,2:(max(Mvec)+1));
% %
% %
% % [~,LAM] =tlsDMD(X,Y,15);
% % E = imag(log(LAM))*1i;
% % [~,I] = sort(abs(E),'ascend');
% % E = E(I(1:r));
% % Eval = cell(length(Mvec),Ns,5);
% % DIST = zeros(length(Mvec),Ns,6);
% %
% %
% % for M = Mvec
% % X = DATA(:,1:M);
% % Y = DATA(:,2:(M+1));
% %
% % for jj = 1:Ns
% % jj
% % ct
% % Nr = sigma*randn(size(DATA,1),M+1);
% % X = DATA(:,1:M) + Nr(:,1:end-1);
% % Y = DATA(:,2:(M+1)) + Nr(:,2:end);
% %
% % [~,LAM] = exactDMD(X,Y,r);
% % LAM = log(LAM);
% % [~,I] = sort(abs(LAM),'ascend');
% % LAM = LAM(I(1:r));
% % Eval{ct,jj,1} = LAM;
% % DIST(ct,jj,1) = VecDist(E,LAM);
% %
% % [~,LAM] = fbDMD(X,Y,r);
% % LAM = log(LAM);
% % Eval{ct,jj,2} = LAM;
% % DIST(ct,jj,2) = VecDist(E,LAM);
% %
% % [~,LAM] = tlsDMD(X,Y,r);
% % LAM = log(LAM);
% % Eval{ct,jj,3} = LAM;
% % DIST(ct,jj,3) = VecDist(E,LAM);
% %
% % [~,LAM] = optdmd([X,Y(:,end)],(0:M)/10,r,2,varpro_opts('ifprint',0),1i*imag(LAM)*10);
% % Eval{ct,jj,4} = LAM/10;
% % DIST(ct,jj,4) = VecDist(E,LAM/10);
% % end
% % ct = ct+1
% % end
%%
load('Noisy_Cylinder_Results.mat')
figure
mm = mean(DIST(:,:,1),2);
st = std(DIST(:,:,1),[],2);
h=loglog(Mvec(:),mm,'k');
hold on
errorbar(Mvec(:),mm,st,'.-k','linewidth',1,'markersize',12)
h. HandleVisibility='off';
mm = mean(DIST(:,:,2),2);
st = std(DIST(:,:,2),[],2);
errorbar(Mvec(:),mm,st,'.-g','linewidth',1,'markersize',12)
mm = mean(DIST(:,:,3),2);
st = std(DIST(:,:,3),[],2);
errorbar(Mvec(:),mm,st,'.-r','linewidth',1,'markersize',12)
mm = mean(DIST(:,:,4),2);
st = std(DIST(:,:,4),[],2);
errorbar(Mvec(:),mm,st,'.-b','linewidth',1,'markersize',12)
xlim([100,1000])
ylim([10^(-5),2])
title('Mean Relative Eigenvalue Error','interpreter','latex','fontsize',18)
xlabel('$M$','interpreter','latex','fontsize',18)
grid on
ax=gca; ax.FontSize=18;
legend({'exactDMD','fbDMD','tlsDMD','optDMD'},'interpreter','latex','fontsize',12,'location','southwest')
exportgraphics(gcf,'cylinder_denoised.pdf','ContentType','vector','BackgroundColor','none')
function a = VecDist(P,Q)
%%% CURRENTLY ASSUMES LENGTH OF P AND Q ARE EQUAL %%%
P = P(:); Q = Q(:); Q = flipud(Q);
C = zeros(length(P),length(Q));
for ii = 1:length(P)
for jj = 1:length(Q)
C(ii,jj)=abs(P(ii)-Q(jj))^2;
end
end
M = matchpairs(C,1000);
P = P(M(:,1));
Q = Q(M(:,2));
[~,I] = sort(abs(P),'ascend');
P = P(I(1:11));
Q = Q(I(1:11));
% a = sqrt(norm(P-Q)^2/length(P));
a = norm(P(:)-Q(:))/norm(P(:));
end