forked from MColbrook/DMD-Multiverse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRossler_compactification_example.m
95 lines (79 loc) · 3.47 KB
/
Rossler_compactification_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
clear
close all
addpath(genpath('./data_sets'))
addpath(genpath('./routines'))
load('rossler_data.mat')
% This data was produced using the code of Claire Valva: https://github.com/clairevalva/resolvent_minimal
% which also uses the code of Dimitrios Giannakis: https://github.com/dg227/NLSA
%% Plot the approximate eigenfunctions and various trajectories
T = round(150/dt);
for IND = 1:3
example_eigenfs(:,IND)=example_eigenfs(:,IND)/mean(abs(example_eigenfs(1:T,IND)));
figure
u = imag(example_eigenfs(:,IND));
scatter3(orig_data(1,:),orig_data(2,:),orig_data(3,:),7,u,'filled');
colormap(brighten(inferno,0.3))
colormap(brighten(brewermap([],'RdYlBu'),-0.4))
clim([-3*mean(abs(u)),3*mean(abs(u))])
axis tight; grid off; axis off
axis equal
set(gca,'DataAspectRatio',[1 1 1]);
xlabel('$X$','interpreter','latex','fontsize',14)
ylabel('$Y$','interpreter','latex','fontsize',14)
zlabel('$Z$','interpreter','latex','fontsize',14,'rotation',0)
view(gca,[3.7779 17.9883]);
if IND ==1
title({'$\sigma\approx 1.0261$'},'interpreter','latex','fontsize',18)
elseif IND==2
title({'$\sigma\approx 2.0516$'},'interpreter','latex','fontsize',18)
else
title({'$\sigma\approx 0.3785$'},'interpreter','latex','fontsize',18)
end
exportgraphics(gcf,sprintf('saved_figures/rossler_efun_%d.png',IND),'ContentType','image','BackgroundColor','w','Resolution',200)
figure
plot((0:length(u)-1)*dt,real(example_eigenfs(:,IND)),'b','linewidth',2)
xlim([0,round(T*dt)])
xlabel('Time','interpreter','latex','fontsize',18)
title('$\mathrm{Re}(\phi)$','interpreter','latex','fontsize',18)
ax=gca; ax.FontSize=18;
exportgraphics(gcf,sprintf('saved_figures/rossler_wave_%d.png',IND),'ContentType','image','BackgroundColor','w','Resolution',200)
figure
plot(real(example_eigenfs(1:T,IND)),imag(example_eigenfs(1:T,IND)),'b','linewidth',2)
hold on
plot(cos(0:0.001:2*pi),sin(0:0.001:2*pi),'g','linewidth',3)
axis equal
axis([-1,1,-1,1]*1.6)
% title('DMD Eigenvalues','interpreter','latex','fontsize',18)
xlabel('$\mathrm{Re}(\phi)$','interpreter','latex','fontsize',18)
ylabel('$\mathrm{Im}(\phi)$','interpreter','latex','fontsize',18)
ax=gca; ax.FontSize=18;
exportgraphics(gcf,sprintf('saved_figures/rossler_spiral_%d.png',IND),'ContentType','image','BackgroundColor','w','Resolution',200)
close all
end
%% Residual plot
clear
load('rossler_data.mat')
T = round(1000/dt);
res = zeros(T,3);
for IND = 1:3
example_eigenfs(:,IND)=example_eigenfs(:,IND)/norm(example_eigenfs(:,IND));
lam=example_freqs(IND);
for del = 1:T
u1 = example_eigenfs(1:end-del,IND);
u2 = example_eigenfs((1+del):end,IND);
res(del,IND) = norm(u2-exp(1i*lam*dt*del)*u1)/norm(u2);
end
end
%%
figure
loglog((1:T)*dt,res,'linewidth',2)
hold on
plot([1,1]/0.071,[0.001,10],'--k','linewidth',2)
xlabel('Time (s)','interpreter','latex','fontsize',18)
title('$\|\phi(t)-\exp(i\sigma t)\phi(0)\|/\|\phi\|$','interpreter','latex','fontsize',18)
legend({'$\sigma\approx 1.0261$','$\sigma\approx 2.0516$','$\sigma\approx 0.3785$','Lyapunov Time'},'interpreter','latex','fontsize',16,'location','northwest')
ax=gca; ax.FontSize=18;
xlim([0.01,1000])
ylim([min(res(:)/1.1),2])
exportgraphics(gcf,'saved_figures/rossler_residuals.pdf','ContentType','vector','BackgroundColor','none')
return