forked from spinalcordtoolbox/spinalcordtoolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_processing.sh
executable file
·267 lines (244 loc) · 14.5 KB
/
batch_processing.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/bin/bash
#
# Example of commands to process multi-parametric data of the spinal cord.
#
# Please note that this batch script has a lot of redundancy and should not
# be used as a pipeline for regular processing. For example, there is no need
# to process both t1 and t2 to extract CSA values.
#
# For information about acquisition parameters, see: https://osf.io/wkdym/
# N.B. The parameters are set for these type of data. With your data, parameters
# might be slightly different.
#
# Usage:
#
# [option] $SCT_DIR/batch_processing.sh
#
# Prevent (re-)downloading sct_example_data:
# SCT_BP_DOWNLOAD=0 $SCT_DIR/batch_processing.sh
#
# Specify quality control (QC) folder (Default is ~/qc_batch_processing):
# SCT_BP_QC_FOLDER=/user/toto/my_qc_folder $SCT_DIR/batch_processing.sh
# Abort on error
set -ve
# For full verbose, uncomment the next line
# set -x
# Fetch OS type
if uname -a | grep -i darwin > /dev/null 2>&1; then
# OSX
open_command="open"
elif uname -a | grep -i linux > /dev/null 2>&1; then
# Linux
open_command="xdg-open"
fi
# Check if users wants to use his own data
if [[ -z "$SCT_BP_DOWNLOAD" ]]; then
SCT_BP_DOWNLOAD=1
fi
# QC folder
if [[ -z "$SCT_BP_QC_FOLDER" ]]; then
SCT_BP_QC_FOLDER=`pwd`/"qc_example_data"
fi
# Remove QC folder
if [ -z "$SCT_BP_NO_REMOVE_QC" -a -d "$SCT_BP_QC_FOLDER" ]; then
echo "Removing $SCT_BP_QC_FOLDER folder."
rm -rf "$SCT_BP_QC_FOLDER"
fi
# get starting time:
start=`date +%s`
# download example data
if [[ "$SCT_BP_DOWNLOAD" == "1" ]]; then
sct_download_data -d sct_example_data
fi
cd sct_example_data
# t2
# ===========================================================================================
cd t2
# Segment spinal cord
sct_deepseg_sc -i t2.nii.gz -c t2 -qc "$SCT_BP_QC_FOLDER"
# Tips: If you are not satisfied with the results you can try with another algorithm:
# sct_propseg -i t2.nii.gz -c t2 -qc "$SCT_BP_QC_FOLDER"
# Vertebral labeling
# Tips: for manual initialization of labeling by clicking at disc C2-C3, use flag -initc2
sct_label_vertebrae -i t2.nii.gz -s t2_seg.nii.gz -c t2 -qc "$SCT_BP_QC_FOLDER"
# Create labels at in the cord at C2 and C5 mid-vertebral levels
sct_label_utils -i t2_seg_labeled.nii.gz -vert-body 2,5 -o labels_vert.nii.gz
# Tips: you can also create labels manually using:
# sct_label_utils -i t2.nii.gz -create-viewer 2,5 -o labels_vert.nii.gz
# Register to template
sct_register_to_template -i t2.nii.gz -s t2_seg.nii.gz -l labels_vert.nii.gz -c t2 -qc "$SCT_BP_QC_FOLDER"
# Tips: If you are not satisfied with the results, you can tweak registration parameters.
# For example here, we would like to take into account the rotation of the cord, as well as
# adding a 3rd registration step that uses the image intensity (not only cord segmentations).
# so we could do something like this:
# sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t2s.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d t2s.nii.gz -dseg t2s_seg.nii.gz -param step=1,type=seg,algo=slicereg,smooth=3:step=2,type=seg,algo=bsplinesyn,slicewise=1,iter=3 -initwarp ../t2/warp_template2anat.nii.gz
# Warp template without the white matter atlas (we don't need it at this point)
sct_warp_template -d t2.nii.gz -w warp_template2anat.nii.gz -a 0
# Compute cross-sectional area (and other morphometry measures) for each slice
sct_process_segmentation -i t2_seg.nii.gz -qc "$SCT_BP_QC_FOLDER"
# Compute cross-sectional area and average between C2 and C3 levels
sct_process_segmentation -i t2_seg.nii.gz -vert 2:3 -o csa_c2c3.csv
# Go back to root folder
cd ..
# t2s (stands for t2-star)
# ===========================================================================================
cd t2s
# Spinal cord segmentation
sct_deepseg_sc -i t2s.nii.gz -c t2s -qc "$SCT_BP_QC_FOLDER"
# Segment gray matter
sct_deepseg_gm -i t2s.nii.gz -qc "$SCT_BP_QC_FOLDER"
# Register template->t2s (using warping field generated from template<->t2 registration)
sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t2s.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d t2s.nii.gz -dseg t2s_seg.nii.gz -param step=1,type=seg,algo=centermass:step=2,type=seg,algo=bsplinesyn,slicewise=1,iter=3:step=3,type=im,algo=syn,slicewise=1,iter=1,metric=CC -initwarp ../t2/warp_template2anat.nii.gz -initwarpinv ../t2/warp_anat2template.nii.gz
# rename warping fields for clarity
mv warp_PAM50_t2s2t2s.nii.gz warp_template2t2s.nii.gz
mv warp_t2s2PAM50_t2s.nii.gz warp_t2s2template.nii.gz
# Warp template
sct_warp_template -d t2s.nii.gz -w warp_template2t2s.nii.gz
# Subtract GM segmentation from cord segmentation to obtain WM segmentation
sct_maths -i t2s_seg.nii.gz -sub t2s_gmseg.nii.gz -o t2s_wmseg.nii.gz
# Compute cross-sectional area of the gray and white matter between C2 and C5
sct_process_segmentation -i t2s_wmseg.nii.gz -vert 2:5 -perlevel 1 -o csa_wm.csv
sct_process_segmentation -i t2s_gmseg.nii.gz -vert 2:5 -perlevel 1 -o csa_gm.csv
# OPTIONAL: Update template registration using information from gray matter segmentation
# # <<<
# # Register WM/GM template to WM/GM seg
# sct_register_graymatter -gm t2s_gmseg.nii.gz -wm t2s_wmseg.nii.gz -w warp_template2t2s.nii.gz -winv warp_t2s2template.nii.gz
# # Rename warping fields for clarity
# mv warp_template2t2s_reg_gm.nii.gz warp_template2t2s.nii.gz
# mv warp_t2s2template_reg_gm.nii.gz warp_t2s2template.nii.gz
# # Warp template (this time corrected for internal structure)
# sct_warp_template -d t2s.nii.gz -w warp_template2t2s.nii.gz
# # >>>
cd ..
# t1
# ===========================================================================================
cd t1
# Segment spinal cord
sct_deepseg_sc -i t1.nii.gz -c t1 -qc "$SCT_BP_QC_FOLDER"
# Smooth spinal cord along superior-inferior axis
sct_smooth_spinalcord -i t1.nii.gz -s t1_seg.nii.gz
# Flatten cord in the right-left direction (to make nice figure)
sct_flatten_sagittal -i t1.nii.gz -s t1_seg.nii.gz
# Go back to root folder
cd ..
# mt
# ===========================================================================================
cd mt
# Get centerline from mt1 data
sct_get_centerline -i mt1.nii.gz -c t2
# sct_get_centerline -i mt1.nii.gz -c t2 -qc "$SCT_BP_QC_FOLDER"
# Create mask
sct_create_mask -i mt1.nii.gz -p centerline,mt1_centerline.nii.gz -size 45mm
# Crop data for faster processing
sct_crop_image -i mt1.nii.gz -m mask_mt1.nii.gz -o mt1_crop.nii.gz
# Segment spinal cord
sct_deepseg_sc -i mt1_crop.nii.gz -c t2 -qc "$SCT_BP_QC_FOLDER"
# Register mt0->mt1
# Tips: here we only use rigid transformation because both images have very similar sequence parameters. We don't want to use SyN/BSplineSyN to avoid introducing spurious deformations.
# Tips: here we input -dseg because it is needed by the QC report
sct_register_multimodal -i mt0.nii.gz -d mt1_crop.nii.gz -dseg mt1_crop_seg.nii.gz -param step=1,type=im,algo=rigid,slicewise=1,metric=CC -x spline -qc "$SCT_BP_QC_FOLDER"
# Register template->mt1
# Tips: here we only use the segmentations due to poor SC/CSF contrast at the bottom slice.
# Tips: First step: slicereg based on images, with large smoothing to capture potential motion between anat and mt, then at second step: bpslinesyn in order to adapt the shape of the cord to the mt modality (in case there are distortions between anat and mt).
sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t2.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d mt1_crop.nii.gz -dseg mt1_crop_seg.nii.gz -param step=1,type=seg,algo=slicereg,smooth=3:step=2,type=seg,algo=bsplinesyn,slicewise=1,iter=3 -initwarp ../t2/warp_template2anat.nii.gz -initwarpinv ../t2/warp_anat2template.nii.gz
# Rename warping fields for clarity
mv warp_PAM50_t22mt1_crop.nii.gz warp_template2mt.nii.gz
mv warp_mt1_crop2PAM50_t2.nii.gz warp_mt2template.nii.gz
# Warp template
sct_warp_template -d mt1_crop.nii.gz -w warp_template2mt.nii.gz -qc "$SCT_BP_QC_FOLDER"
# Compute mtr
sct_compute_mtr -mt0 mt0_reg.nii.gz -mt1 mt1_crop.nii.gz
# Register t1w->mt1
# Tips: We do not need to crop the t1w image before registration because step=0 of the registration is to put the source image in the space of the destination image (equivalent to cropping the t1w)
sct_register_multimodal -i t1w.nii.gz -d mt1_crop.nii.gz -dseg mt1_crop_seg.nii.gz -param step=1,type=im,algo=rigid,slicewise=1,metric=CC -x spline -qc "$SCT_BP_QC_FOLDER"
# Compute MTsat
# Tips: Check your TR and Flip Angle from the Dicom data
sct_compute_mtsat -mt mt1_crop.nii.gz -pd mt0_reg.nii.gz -t1 t1w_reg.nii.gz -trmt 30 -trpd 30 -trt1 15 -famt 9 -fapd 9 -fat1 15
# Extract MTR, T1 and MTsat within the white matter between C2 and C5.
# Tips: Here we use "-discard-neg-val 1" to discard inconsistent negative values in MTR calculation which are caused by noise.
sct_extract_metric -i mtr.nii.gz -method map -o mtr_in_wm.csv -l 51 -vert 2:5
sct_extract_metric -i mtsat.nii.gz -method map -o mtsat_in_wm.csv -l 51 -vert 2:5
sct_extract_metric -i t1map.nii.gz -method map -o t1_in_wm.csv -l 51 -vert 2:5
# Bring MTR to template space (e.g. for group mapping)
sct_apply_transfo -i mtr.nii.gz -d $SCT_DIR/data/PAM50/template/PAM50_t2.nii.gz -w warp_mt2template.nii.gz
# Go back to root folder
cd ..
# dmri
# ===========================================================================================
cd dmri
# bring t2 segmentation in dmri space to create mask (no optimization)
sct_maths -i dmri.nii.gz -mean t -o dmri_mean.nii.gz
sct_register_multimodal -i ../t2/t2_seg.nii.gz -d dmri_mean.nii.gz -identity 1 -x nn
# create mask to help moco and for faster processing
sct_create_mask -i dmri_mean.nii.gz -p centerline,t2_seg_reg.nii.gz -size 35mm
# crop data
sct_crop_image -i dmri.nii.gz -m mask_dmri_mean.nii.gz -o dmri_crop.nii.gz
# motion correction
# Tips: if data have very low SNR you can increase the number of successive images that are averaged into group with "-g". Also see: sct_dmri_moco -h
sct_dmri_moco -i dmri_crop.nii.gz -bvec bvecs.txt
# segmentation with propseg
sct_deepseg_sc -i dmri_crop_moco_dwi_mean.nii.gz -c dwi -qc "$SCT_BP_QC_FOLDER"
# Register template to dwi
# Tips: Again, here, we prefer to stick to segmentation-based registration. If there are susceptibility distortions in your EPI, then you might consider adding a third step with bsplinesyn or syn transformation for local adjustment.
sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t1.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d dmri_crop_moco_dwi_mean.nii.gz -dseg dmri_crop_moco_dwi_mean_seg.nii.gz -param step=1,type=seg,algo=centermass:step=2,type=seg,algo=bsplinesyn,metric=MeanSquares,smooth=1,iter=3 -initwarp ../t2/warp_template2anat.nii.gz -initwarpinv ../t2/warp_anat2template.nii.gz -qc "$SCT_BP_QC_FOLDER"
# Rename warping fields for clarity
mv warp_PAM50_t12dmri_crop_moco_dwi_mean.nii.gz warp_template2dmri.nii.gz
mv warp_dmri_crop_moco_dwi_mean2PAM50_t1.nii.gz warp_dmri2template.nii.gz
# Warp template and white matter atlas
sct_warp_template -d dmri_crop_moco_dwi_mean.nii.gz -w warp_template2dmri.nii.gz -qc "$SCT_BP_QC_FOLDER"
# Compute DTI metrics
# Tips: The flag -method "restore" allows you to estimate the tensor with robust fit (see: sct_dmri_compute_dti -h)
sct_dmri_compute_dti -i dmri_crop_moco.nii.gz -bval bvals.txt -bvec bvecs.txt
# Compute FA within right and left lateral corticospinal tracts from slices 2 to 14 using weighted average method
sct_extract_metric -i dti_FA.nii.gz -z 2:14 -method wa -l 4,5 -o fa_in_cst.csv
# Bring metric to template space (e.g. for group mapping)
sct_apply_transfo -i dti_FA.nii.gz -d $SCT_DIR/data/PAM50/template/PAM50_t2.nii.gz -w warp_dmri2template.nii.gz
# Go back to root folder
cd ..
# fmri
# ===========================================================================================
cd fmri
# Average all fMRI time series (to be able to do the next step)
sct_maths -i fmri.nii.gz -mean t -o fmri_mean.nii.gz
# Get cord centerline
sct_get_centerline -i fmri_mean.nii.gz -c t2s
# Create mask around the cord to help motion correction and for faster processing
sct_create_mask -i fmri_mean.nii.gz -p centerline,fmri_mean_centerline.nii.gz -size 35mm
# Crop data
sct_crop_image -i fmri.nii.gz -m mask_fmri_mean.nii.gz -o fmri_crop.nii.gz
# Motion correction
# Tips: Here data have sufficient SNR and there is visible motion between two consecutive scans, so motion correction is more efficient with -g 1 (i.e. not average consecutive scans)
sct_fmri_moco -i fmri_crop.nii.gz -g 1
# Segment spinal cord manually
# Since these data have very poor cord/CSF contrast, it is difficult to segment the cord properly
# and hence in this case we do it manually. The file is called: fmri_crop_moco_mean_seg_manual.nii.gz
# Register template->fmri
sct_register_multimodal -i $SCT_DIR/data/PAM50/template/PAM50_t2.nii.gz -iseg $SCT_DIR/data/PAM50/template/PAM50_cord.nii.gz -d fmri_crop_moco_mean.nii.gz -dseg fmri_crop_moco_mean_seg_manual.nii.gz -param step=1,type=seg,algo=slicereg,metric=MeanSquares,smooth=2:step=2,type=im,algo=bsplinesyn,metric=MeanSquares,iter=5,gradStep=0.5 -initwarp ../t2/warp_template2anat.nii.gz -initwarpinv ../t2/warp_anat2template.nii.gz -qc "$SCT_BP_QC_FOLDER"
# Rename warping fields for clarity
mv warp_PAM50_t22fmri_crop_moco_mean.nii.gz warp_template2fmri.nii.gz
mv warp_fmri_crop_moco_mean2PAM50_t2.nii.gz warp_fmri2template.nii.gz
# Warp template and spinal levels (here we don't need the WM atlas)
sct_warp_template -d fmri_crop_moco_mean.nii.gz -w warp_template2fmri.nii.gz -a 0 -s 1
# Note, once you have computed fMRI statistics in the subject's space, you can use
# warp_fmri2template.nii.gz to bring the statistical maps on the template space, for group analysis.
cd ..
# Display results (to easily compare integrity across SCT versions)
# ===========================================================================================
set +v
end=`date +%s`
runtime=$((end-start))
echo "~~~" # these are used to format as code when copy/pasting in github's markdown
echo "Version: `sct_version`"
echo "Ran on: `uname -nsr`"
echo "Duration: $(($runtime / 3600))hrs $((($runtime / 60) % 60))min $(($runtime % 60))sec"
echo "---"
echo "t2/CSA: " `awk -F"," ' {print $6}' t2/csa_c2c3.csv | tail -1`
echo "mt/MTR(WM): " `awk -F"," ' {print $8}' mt/mtr_in_wm.csv | tail -1`
echo "t2s/CSA_GM: " `awk -F"," ' {print $6}' t2s/csa_gm.csv | tail -1`
echo "t2s/CSA_WM: " `awk -F"," ' {print $6}' t2s/csa_wm.csv | tail -1`
echo "dmri/FA(CST_r): " `awk -F"," ' {print $8}' dmri/fa_in_cst.csv | tail -1`
echo "dmri/FA(CST_l): " `awk -F"," ' {print $8}' dmri/fa_in_cst.csv | tail -2 | head -1`
echo "~~~"
# Display syntax to open QC report on web browser
echo "To open Quality Control (QC) report on a web-browser, run the following:"
echo "$open_command $SCT_BP_QC_FOLDER/index.html"