-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
53 lines (39 loc) · 1.42 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
from eda_app import run_eda_app
from ml_app import run_ml_app
st.set_page_config(page_title="Early Diabetes Risk Prediction",
page_icon="🦍")
st.image("./data/diabetes cover.jpg")
def main():
menu=["Home","EDA","ML Model","About"]
choice=st.sidebar.selectbox("Menu", menu)
if choice=="Home":
st.title("Early Diabetes Risk Prediction App")
st.write("""
This dataset contains the sign and symptoms data of newly diabetic or would be diabetic patient.
#### Datasource
- https://archive.ics.uci.edu/ml/datasets/Early+stage+diabetes+risk+prediction+dataset.
#### App Content
- EDA Section: Exploratory Data Analysis of Data
- ML Section: ML Predictor App
""")
pass
elif choice=="EDA":
run_eda_app()
pass
elif choice=="ML Model":
run_ml_app()
pass
else:
st.title("About")
st.subheader("Durgance Gaur")
st.subheader("NIT Silchar")
st.markdown("""
* ### Description :
* ##### The dataset was collected using direct questions from patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by doctor
* ### Metadata :
* ##### The dataset is a multivariate datasets in CSV format.
* ##### It has 520 Datapoints and 17 fields or attribtues
""")
if __name__=="__main__":
main()