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ABSTRACT

DSGE models have become popular in macroeconomics but the combination of
nonlinear microeconomic behavior of the agents and model consistent expectations
raise intricate computational issues. This chapter reviews solution methods and esti-
mation of DSGE models. Perfect foresight deterministic models can easily be solved
with a great degree of accuracy. In practice, medium size stochastic models can only
be solved by local approximation or perturbation approach. The Bayesian approach to
estimation is privileged. It provides a convenient way to communicate both the prior
information available to the econometrician and new information revealed by the data.
This chapter focuses on methods frequently used in applied work rather than aiming
at being exhaustive.

1.1 Introduction

Dynamic stochastic general equilibrium models (DSGE) have become very popular in
applied macroeconomics, both in academics and in policy institutions. This chapter
reviews the methods that are currently used to solve them and estimate their param-
eters.

DSGE modeling adopts the methodology developed by Kydland and Prescott
(1982), at the origin of real business cycle analysis. It views macroeconomic models as
simplified representations of reality built on behavior of representative agents that is
consistent with microeconomic theory. Nowadays, DSGE models take into account a
large number of frictions, real or nominal, borrowed from New Keynesian economics.
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Depending on the aim of the model, nominal rigidities and money transmission mech-
anisms, labor market, fiscal policy or open economy aspects are emphasized and the
corresponding mechanisms developed.

However, whatever the focus of a particular model, common features are present
that define a class of models for which a particular methodology has been developed.

In this class of model, most agents (households, firms, financial intermediaries,. . .)
take their decisions while considering inter-temporal objective functions: life-time wel-
fare for households, investment value for the firms, and so on. Agents must therefore
solve dynamic optimization problems.

Given the specification of utility and technological constraints usually used in mi-
croeconomics the resulting models are non-linear. Because of the necessity to solve
dynamic optimization problems, future values of some variables matter for current de-
cisions. In a stochastic world, these future values are unknown and agents must form
expectations about the future. The hypothesis of rational expectations according to
which agents form expectations that are consistent with the conditional expectations
derived from the model (see Muth, 1961) provide a convenient solution but not very
realistic solution in absence of precise knowledge on the actual process of expectation
formation.

All that leads to mathematical models that take the form of non-linear stochastic
difference equations. Solving such models is not easy and sophisticated numerical tech-
niques must be used. In what follows, we present popular algorithms to find approx-
imate solutions for such models, both in stochastic and deterministic cases. Efficient
algorithms exist for the limiting case where there is no future uncertainty and these
algorithms can be used to study separately the full implication of non-linearities in
the model in absence of stochastic components.

The estimation of the parameters of DSGE models is currently mostly done on the
basis of a linear approximation of the model, even if several authors have attempted to
estimate non-linear approximation with various versions of the particle filter (see for
example Amisano and Tristani, 2010; Anreasen, 2011). Even with linear approxima-
tion, estimation of DSGE model remains computationally very intensive, requiring to
solve repeatedly the model and to compute its log-likelihood with the Kalman filter.

It is possible to estimate DSGE models by the maximum likelihood, but we advo-
cate rather a Bayesian approach as a way to make explicit, in the estimation process,
the use of a priori information, to mitigate the problems arising from lack of iden-
tification of some parameters and to address misspecification of the model in some
direction.

In the second Section, we present a generic version of the model, to fix notations to
be used later. The solution of perfect foresight models is discussed in Section 1.3 and
for stochastic models in Section 1.4. Estimation is presented in Section 1.5. We present
a list of software products implementing these methods in Section 1.6 and conclude
with directions for future work.

1.2 A generic model

A DSGE model can, in general, be represented as a set of non–linear equations. The
unknowns of these equations are the endogenous variables. The equations relate the
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current value of the endogenous variables to their future values, because of expectations
and to their past values, to express inertia. The system is affected by external influences
that are described by exogenous variables.

The dynamics of such systems can be studied first by abstracting of all uncertainty
and making the extreme assumption that agents know exactly the future. One speaks
then of perfect foresight model. Perfect foresight, deterministic, models, even of large
size, can be studied with great accuracy and with simpler methods than stochastic
ones.

Formally, we write a perfect foresight model as

f(yt+1, yt, yt−1, ut) = 0

where f() is a vector of nfunctions,R3n+p → Rn, y is a vector of n endogenous
variables, that can appear in the model in the current period, t, as well as in the
next period t + 1 and in the previous period t − 1. ut is a vector of p exogenous
variables. Expressing the equations of the model as functions equal to zero helps the
mathematical treatment.

In general, endogenous variables may appear in a model with leads or lags of more
than one period and exogenous variables at periods other than the current one may
also enter the equations. However, with the addition of adequate auxiliary variables
and equations, it is always possible to write more complicated models in this canonical
form. The algorithm to do so is discussed in Broze et al. (1990). In a given model,
not all variables are necessarily present in previous, current and future periods. If it
is important to take this fact into account for efficient implementation of computer
code, it simplifies the exposition of the solution algorithms to abstract from it, without
departure from generality.

When the model is stochastic, the exogenous variables are zero mean random vari-
ables. Note that this assumption is compatible with a large class of models but excludes
models where exogenous processes contain an exogenous change in mean such as in-
crease in life expectancy or policy change. When exogenous variables are stochastic,
the endogenous are random as well and, in current period t, it is not possible to know
the exact future values of endogenous variables in t+1, only their conditional distribu-
tion, given the information available in t. With the rational expectations hypothesis,
the equations of the model hold under conditional expectation:

E {f(yt+1, yt, yt−1, ut) |Ωt } = 0,

where Ωt is the information set available at period t. In what follows, we assume that
shocks ut are observed at the beginning of period t and that the state of the system
is described by yt−1. Therefore, we define the information set available to the agents
at the beginning of period t as,

Ωt = {ut, yt−1, yt−2, . . .} .

This convention is arbitrary and another one could be used instead, but such a conven-
tion is necessary to fully specify a given model. Now we use the lighter but equivalent

yrdu
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notation
Et {f(yt+1, yt, yt−1, ut)} = 0.

We make the following restrictive assumptions on the shocks ut:

E(ut) = 0

E(utu
′
τ ) = 0 t 6= τ

We take into account possible correlation between the shocks, but exclude serial corre-
lation. Note that auto-correlated processes can be accommodated by adding auxiliary
endogenous variables. In that case, the random shock is the innovation of the auto-
correlated process.

1.2.1 The nature of the solution

Despite the fact that the deterministic and the stochastic versions of the model are
very close, there is an important difference that has consequences for the solution
strategy.

In the deterministic case, it is a perfect foresight model where all information about
the future values of the exogenous variables is known at the time of computation. On
the contrary, in the stochastic case, the realizations of the exogenous variables are only
learned period by period.

In the perfect foresight case, it is therefore possible to compute at once the trajec-
tory of the endogenous variables. In the stochastic case, this approach is not available
because the value of the shocks are only learned at the beginning of each period.
Instead, the solution must take the form of a solution function that specifies how en-
dogenous variables yt are set as a function of the previous state yt−1 and the shocks
observed at the beginning of period t:

yt = g (yt−1, ut) .

In most cases, there is no closed form expression for function g(). It is necessary to use
numerical methods to approximate this unknown function. On the basis of the Implicit
Function Theorem, Jin and Judd (2002) discuss the conditions for the existence of a
unique solution function in the neighborhood of the steady state.

It is well known that rational expectation models entails a multiplicity of solutions,
many of them taking the form of self-fulfilling dynamics (see for example Farmer and
Woodford, 1997). Most research have focused on models that, after a shock, display a
single trajectory back to steady state. Note that this convergence is only asymptotic. In
such cases, agents are supposed to be able to coordinate their individual expectations
on this single trajectory. Much of the literature on DSGE models has been following
this approach but attention has also been given to models with a multiplicity of stable
solutions and possible sunspots as in Lubik and Schorfheide (2004).

yrdu
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1.3 Solving perfect foresight models

In the perfect foresight case, the only approximation that we make is that convergence
back to the steady state takes place after a finite number of periods rather than
asymptotically. The larger number of periods one considers, the more innocuous the
approximation.

One can then represent the problem as a two boundary value problem where the
initial value of variables appearing with a lag in the model are given by initial con-
ditions and the final value of variables appearing with a lead in the model are set at
their steady state value.

When one stacks the equations for all the T periods of the simulation as well as
the initial and the terminal conditions, one obtains a large set of nonlinear equations:

f (yt+1, yt, yt−1, ut) = 0 t = 1, . . . , T

with initial conditions, y0 = y⋆, and terminal conditions, yT+1 = ȳ, the steady state.
Until Laffargue (1990), the literature considers that for large macroeconomic mod-

els, the size of the nonlinear system would be too large to use Newton method to
solve it. Consider for example, a multi–country model with ten countries where the
one–country model counts 40 equations and that one simulates over 100 periods. The
resulting system of nonlinear equations would count 40,000 equations and the Jacobian
matrix 1.6 billion elements.

Such large problems seemed then better attacked by first order iterative methods
such as Gauss–Seidel as in Fair and Taylor (1983) or Gilli and Pauletto (1997).

On the contrary, Laffargue (1990) and Boucekkine (1995) show that the large
Jacobian of the stacked system has a particular structure that can be exploited to
solve efficiently the linear problem at the heart of Newton’s method.

The vectors of endogenous variables in each period, yt, can be stacked in a single
large vector Y such that

Y =
[
y′1 . . . y′T

]′
.

and the entire system for all T periods can be written as F(Y ) = 0. Using the New-
ton method to solve this system of equations entails starting with a guess Y (0) and
obtaining iteratively a series of Y (k), such that

∂F

∂Y

∣∣∣∣
Y =Y (k−1)

∆Y (k) = −F(Y (k−1)),

and
Y (k) = ∆Y (k) + Y (k−1).

The iterations are repeated until F(Y (k)) or ||x(k) − x(k−1)|| are small enough. As
mentioned above, a practical difficulty arises when the size of the Jacobian matrix ∂F

∂Y

is very large.
As remarked by Laffargue (1990), given the dynamic nature of the system, and

that, in each period, the current variables depend only on the value of the variables
in the previous and in the next period, this Jacobian matrix has a block tridiagonal
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structure:




f2,1 f1,1
. . .

. . .
... f3,t f2,t f1,t

...
. . .

. . .

f3,T f2,T







∆y
(k)
1

∆y
(k)
2
...

∆y
(k)
t−1

∆y
(k)
t

∆y
(k)
t+1
...

∆y
(k)
T−1

∆y
(k)
T




=




−f1

(
y
(k−1)
2 , y

(k−1)
1 , y⋆, u1

)

...

−ft

(
y
(k−1)
t+1 , y

(k−1)
t , y

(k−1)
t−1 , ut

)

...

−fT

(
ȳ, y

(k−1)
T , y

(k−1)
T−1 , uT

)




.

The fact that the partial derivatives with respect to the state variables appear below
the main diagonal follows directly from the fact that they are indeed predetermined
variables. This particular structure suggests that it is possible to triangularize the
Jacobian by solving T linear problems of the size of the model for one period and then
to find the improvement vector to the solution of the whole system through backward
substitution.

For example, after triangularization in period t, the system looks like




I M1

. . .
. . .

I Mt

f3,t+1 f2,t+1 f1,t+1

. . .
. . .

f3,T f2,T







∆y
(k)
1

∆y
(k)
2
...

∆y
(k)
t−1

∆y
(k)
t

∆y
(k)
t+1
...

∆y
(k)
T−1

∆y
(k)
T







d0
d1
d2
...
dt

−ft+1

(
y
(k−1)
t+2 , y

(k−1)
t+1 , y

(k−1)
t , ut

)

...

−fT

(
ȳ, y

(k−1)
T , y

(k−1)
T−1 , uT

)




The triangularization obeys to the following recursive rules:

M1 = f−1
2,1f1,1

d1 = −f−1
2,1f

(k−1)
1

(
y
(k−1)
2 , y

(k−1)
1 , y⋆, u1

)

then

Mt = (f2,t − f3,tMt−1)
−1 f1,t t = 2, . . . , T

dt = − (f2,t − f3,tMt−1)
−1

(
f3,tdt−1 + f

(k−1)
t

(
y
(k−1)
t+1 , y

(k−1)
t , y

(k−1)
t−1 , ut

))
t = 2, . . . , T
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The values of ∆y
(k)
t are then obtained by backward substitution, starting with ∆y

(k)
T :

∆y
(k)
T = dT

∆y
(k)
t = dt −Mt∆y

(k)
t+1 t = T − 1, . . . , 1

Note that this approach at solving a large two-point boundary value problem starts
showing its age. It was developed in the mid-90’s when a PC had no more than 64MB
RAM. In 2014, when 4GB RAM or more is the norm, the linear problem that is at the
core of Newton’s method can be more efficiently handled simply using sparse matrix
code and storing at once all the non-zero elements of the Jacobian of the entire stacked
non-linear model.

As stated above, the only simplifying assumption, in this approach, is to consider
that, after a shock, the steady state is reached in finite time, rather than only asymp-
totically. As usually, one is more interested by the trajectory at the beginning of the
simulation, around the time when shocks are hitting the economy, it is easy to verify
whether the beginning of the simulation is affected by varying the horizon, T .

It is also possible to consider alternative terminal conditions such as yT = yT+1, or
aiming at the trajectory resulting from a linear approximation of the model, among
others.

1.4 Solving stochastic models

As stated above, the stochastic version of the general model is pretty similar:

E {f (yt+1, yt, yt−1, ut|ut, yt−1, yt−2, . . .)} = 0 (1.1)

the exogenous variables, ut, are now stochastic variables, and, because the future value
of endogenous variables, yt+1, will be affected by ut+1 that are still unknown in period
t, the equation can only hold under conditional expectation.

Because only yt−1 affects the dynamics of the model, it is sufficient to retain ut

and yt−1 in the information set for period t1.
Obviously, at a given dates, future shocks are unknown and it is not possible to

compute numerical trajectories as in the case of perfect foresight models. It is necessary
to change the focus of inquiry toward the decision rules used to set yt as a function of
the previous state of the system and current shocks in a way consistent with equation
(1.1). In the stochastic case, we are required to search for an unknown function. It
turns out that only in very few cases this solution function has an analytic expression.
It is therefore necessary to use numerical methods to provide an approximation of the
solution function.

1It is frequent in the macroeconomic literature to make different assumptions concerning the
information set. For example, the assumption made here is consistent with stock of capital on an end
of period basis. When one considers stock of capital on a beginning of period basis, then stock of
capital at the current period is predetermined and enters the information set.

When using existing software for solving a DSGE model, it is necessary to be attentive to the
assumption used in that software concerning the information set and rewrite the model in manner
consistent with this assumption.
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Several methods exist in the literature to compute approximation of the solution
function. Discretization of the state space and iterations on the policy function provide
an approximation in tabular form, global methods such as projection methods control
the quality of approximation over the entire support of the model while the pertur-
bation approach provides local approximation around a given point. Early surveys of
these methods appear in Taylor and Uhlig (1990) and Judd (1996).

For medium to large size models, the most frequently used method is perturbation.
It is possible to solve models with several hundreds of equations easily at first or second
order. At first order, the perturbation approach is identical to linearization that has
been the dominant method used since the inception of RBC analysis. An early survey
of methods used to solve dynamic linear economies can be found in Anderson et al.
(1996).

It is important to note that the approximate solution computed by perturbation
method doesn’t depend on the entire distribution of the stochastic shocks but only on
as many moments as the order of approximation. We write Σu the covariance matrix

of the shocks and Σ
(k)
u the tensor containing the kth moments of this distribution.

It is useful to introduce the stochastic scale variable, σ, in the model in order to
take into account the effect of future uncertainty on today’s decisions. We introduce
also the auxiliary random variables εt such that

ut+1 = σεt+1.

When σ = 0, there is no uncertainty concerning the future. The moments of εt are

consistent with the moments of shocks ut: Σ
(k)
u = σkΣ

(k)
ε .

In the perturbation approach, it is necessary to include the stochastic scale variable
as an argument of the solution function:

yt = g (yt−1, ut, σ) .

The stochastic scale doesn’t play a role at first order, but it appears when deriving
the solution at higher orders.

Using the solution function, it is possible to replace yt and yt+1 in the original
model and define an equivalent model F () that depends only on yt−1, ut, εt+1 and σ:

yt+1 = g(yt, ut+1, σ)

= g(g(yt−1, ut, σ), ut+1, σ)

F (yt−1, ut, εt+1, σ) = f(g(g(yt−1, ut, σ), σεt+1, σ), g(yt−1, ut, σ), yt−1, ut)

and
Et {F (yt−1, ut, εt+1, σ)} = 0. (1.2)

It is worthwhile to underscore the different roles played by the exogenous shocks
depending on whether they are already realized, ut, or still to be expected, ut+1 =
σεt+1. Once the shocks are observed, they are just additional elements of the state
space. When there are random shocks to happen in the future, they contribute to the
uncertainty faced by the agents. Their rational decision will be based on the expected
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value of future development. Replacing future shocks, ut+1, by the stochastic scale
variable and auxiliary shocks, σεt+1, it is possible to take future uncertainty into
account in the perturbation approach.

Based on the partial derivatives of Et {F (yt−1, ut, εt+1, σ)}, evaluated at the de-
terministic steady state, we will recover the partial derivatives of unknown function
g (yt−1, ut, σ). It is useful to distinguish two types of perturbation that take place
simultaneously:

1. for state space points away, but in the neighborhood, of the deterministic steady
state, by considering variations in yt−1 and ut

2. away from a deterministic model towards a stochastic one, by increasing the
stochastic scale of the model from σ = 0 to a positive value.

The deterministic steady state, ȳ, is formally defined by

f(ȳ, ȳ, ȳ, 0) = 0.

A model can have several steady states, but only one of them will be used for a local
approximation.

Furthermore, the decision rule evaluated at the deterministic steady state must
verify, in absence of shocks and future uncertainty,

ȳ = g(ȳ, 0, 0).

The deterministic steady state is found by solving a set of non-linear equations. Be-
cause, in practice, the steady state needs to be computed repeatedly for a great many
values of the parameters in estimation, it is best to use an analytic solution when one
is available, or to use analytic substitution to reduce the size of the non–linear problem
to be solved.

The perturbation approach starts with a Taylor expansion of the original model.
It is necessary to proceed order by order: the first order approximation of the solution
function will enter in the second order approximation; the first and the second order
solution in the computation of the third order and so on.

A first order expansion of the decision rule takes the form

yt ≈ ȳ + gy ŷt−1 + guut

where ŷt−1 = yt−1− ȳ and the first order derivatives of function g(yt−1, ut), contained
in matrices gy and gu are unknown. Our task is to recover them from the the first
order expansion of the original model:

Et

{
F (1)(yt−1, ut, εt+1, σ)

}

= Et

{
f(ȳ, ȳ, ȳ, 0) + fy+ (gy (gy ŷ + guu+ gσσ) + guσε

′ + gσσ)

+ fy0 (gy ŷ + guu+ gσσ) + fy− ŷ + fuu
}

= 0.
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Here, we introduce the following notations: ŷ = yt−1−ȳ, u = ut, ε
′ = εt+1, fy+ = ∂f

∂yt+1
,

fy0 = ∂f
∂yt

, fy− = ∂f
∂yt−1

, fu = ∂f
∂ut

, gy = ∂g
∂yt−1

, gu = ∂g
∂ut

, gσ = ∂g
∂σ

.

It is easy to compute the conditional expectation. Evaluated at the deterministic
steady state, all partial derivatives are deterministic as well. The expectation being
a linear operator, it is distributed over all the terms and reduces to Et {ε

′} = 0.
This disappearance of future shocks is a manifestation of the property of certainty
equivalence in linear(–ized) models.

We are now faced with a deterministic equation:

Et

{
F (1)(yt−1, ut, εt+1, σ)

}

= f(ȳ, ȳ, ȳ, 0) + fy+ (gy (gy ŷ + guu+ gσσ) + gσσ)

+ fy0 (gy ŷ + guu+ gσσ) + fy− ŷ + fuu
}

=
(
fy+gygy + fy0gy + fy−

)
ŷ +

(
fy+gygu + fy0gu + fu

)
u

+
(
fy+gygσ + fy0gσ

)
σ

= 0.

Because the equation must hold for any value of ŷ, u and σ, it must be that

(
fy+gygy + fy0gy + fy−

)
= 0, (1.3)

(
fy+gygu + fy0gu + fu

)
= 0, (1.4)

(
fy+gygσ + fy0gσ

)
= 0, (1.5)

These equations will let us recover unknown gy, gu and gσ, respectively.

1.4.0.1 Recovering gy.
The first condition reveals a particular difficulty as gy appears in a matrix polynomial
equation. (

fy+gygy + fy0gy + fy−

)
ŷ = 0 (1.6)

Several approaches have been proposed in the literature. One of the most robust and
efficient is as follows.

First, rewrite equation 1.6 using a state space representation:

[
0 fy+

I 0

] [
I
gy

]
gyŷ =

[
−fy− −fy0

0 I

] [
I
gy

]
ŷ (1.7)

or, using the fact that, in absence of shocks and at first order,

ŷt = gy ŷt−1

ŷt+1 = gygyŷt−1.
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[
0 fy+

I 0

] [
ŷt

ŷt+1

]
=

[
−fy− −fy0

0 I

] [
ŷt−1

yt

]
(1.8)

Note that the lower sub matrix block of the coefficient matrices imposes that the upper
half of the right hand side state vector be equal to the lower half of the left hand side
one.

Given that only yt−1 − ȳ is fixed by initial conditions in dynamical system (1.8),
the dynamics are obviously under determined. This should not come at a surprise as
it is well known that rational expectation models admit many solutions, most of them
with self–fulfilling dynamics.

The literature on DSGE models focuses on models that have a unique stable dy-
namics, meaning that after a shock, there is a single trajectory back to equilibrium.
The existence of a unique stable trajectory makes it easier to postulate that agents
are able to coordinate their expectation on a single trajectory for the economy.

We therefore use the requirement of a single stable trajectory as a selection device to
isolate one solution for gy. Studying the stability of a linear dynamic system requires
analyzing its eigenvalues. However, the presence of the D matrix on the left hand
side, makes computing the eigenvalues more complicated, particularly as, in many
applications, this matrix may be singular.

The theory of generalized eigenvalues and the real generalized Schur decomposition,
see Golub and van Loan (1996), provides a way to handle this problem.

The real generalized Schur decomposition stipulates that for a pencil formed by
two real n x n matrices, there exist orthonormal matrices Q and Z such that

S = QEZ

T = QDZ

and S is upper–triangular and T is quasi upper–triangular, with Q′Q = Z ′Z = I. A
quasi–triangular matrix is a block triangular matrix, with either 1x1 or 2x2 blocks on
the main diagonal. The scalar blocks are associated with real eigenvalues and the 2x2
blocks with complex ones. The algorithm necessary to perform the generalized Schur
decomposition is often referred to as the QZ algorithm and is available in several linear
algebra libraries and matrix programming languages such as Gauss, Matlab, Octave
or Scilab.

The generalized Schur decomposition permits the computation of the generalized
eigenvalue problem that solves

λiDxi = Exi,

When a diagonal block of matrix S is a scalar, Si,i, the generalized eigenvalue is obtain
is following manner:

λi =





Si,i

Ti,i
if Ti,i 6= 0

+∞ if Ti,i = 0 and Si,i > 0
−∞ if Ti,i = 0 and Si,i < 0
any c ∈ C if Ti,i = 0 and Si,i = 0.
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In the last case, any complex number is generalized eigenvalues of pencil < D,E >.
This obviously creates a problem for the stability analysis. However, this case only
occurs when the model is singular, when one equation can be expressed as linear
combination of the other ones. It is nevertheless important for the software to check
for this case as it is an easy mistake to make when writing a complex model.

The algorithm is such that when a diagonal block of matrix S is a 2x2 matrix of
the form [

Sii Si,i+1

Si+1,i Si+1,i+1

]
,

the corresponding block of matrix T is a diagonal matrix ,

(Si,iTi+1,i+1 − Si+1,i+1Ti,i)
2 < −4Si+1,iSi+1,iTi,iTi+1,i+1,

and there is a pair of conjugate eigenvalues:

λi, λi+1 =
SiiTi+1,i+1 + Si+1,i+1Ti,i ±

√
(Si,iTi+1,i+1 − Si+1,i+1Ti,i)

2
+ 4Si+1,iSi+1,iTi,iTi+1,i+1

2Ti,iTi+1,i+1

(1.9)
In any case, the theory of generalized eigenvalues is an elegant way of solving the
problem created by the possibility of the D matrix to be singular: it introduces the
notion of infinite eigenvalue. From the point of view of the analysis of the dynamics
of a linear system, it is obvious that infinite eigenvalues, positive or negative, must be
treated as explosive roots2.

The next step is to apply the real generalized Schur decomposition to the linear
dynamic system while partitioning it between stable and unstable components:

[
T11 T12

0 T22

] [
Z ′
11 Z ′

21

Z ′
12 Z ′

22

] [
I
gy

]
gy ŷ =

[
S11 S12

0 S22

] [
Z ′
11 Z ′

21

Z ′
12 Z ′

22

] [
I
gy

]
ŷ

The partitioning is such that S11 and T11 have stable eigenvalues and S22 and T22,
explosive ones. The rows of the Z matrix are in turn partitioned so as to be conformable

with

[
I
gy

]
.

The only way to cancel the influence of explosive roots on the dynamics and to
obtain a stable trajectory is to impose

Z ′
21 + Z ′

22gy = 0,

or
gy = −

(
Z−1
22

)′
Z ′
21. (1.10)

A unique stable trajectory exists if and only if Z22 is non-singular: there must be

2The additional complexity introduced by the emergence of quasi–triangular matrices in the
real generalized Schur decomposition is the price being paid to remain in the set of real numbers.
From a computer implementation point of view, it is simpler and more efficient than having to use
computations with complex numbers.
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as many roots larger than one in modulus as there are forward–looking variables in
the model and the rank condition must be satisfied. This corresponds to Blanchard
and Kahn conditions for existence and unicity of a stable equilibrium (Blanchard and
Kahn, 1980).

When the condition is satisfied, equation (1.10) provides the determination of gy.
Determining gy, while selecting the stable trajectory, is the most mathematically

involved step in the solution of linear rational expectation models. Recovering gu and
gσ is in turn much simpler.

1.4.0.2 Recovering gu.
Given gy, the solution for gu is directly obtained from equation (1.4):

fy+gygu + fy0gu + fu = 0

and
gu = −

(
fy+gy + fy0

)−1
fu.

1.4.0.3 Recovering gσ.
Equation (1.5) provides the necessary condition to establish that gσ is always null:

fy+gygσ + fy0gσ = 0

is homogeneous and
gσ = 0.

This is yet another manifestation of the certainty equivalence property of first order
approximation.

1.4.0.4 First order approximated decision function.

Putting everything together, the first order approximation of the solution function g()
takes the form

yt = ȳ + gyŷt−1 + guut. (1.11)

It is a V AR(1) model, but the coefficient matrices gy and gu are constrained by the
structural parameters, the specification of the equations of the original non–linear
model, the rational expectation hypothesis and the selection of a stable dynamics.

However, the form of the first–order approximated solution let us use all the usual
tools developed for the analysis of VAR models (see, for example Hamilton, 1994).

In particular, the first and second theoretical moments are derived as

E {yt} = ȳ,

Σy = gyΣyg
′
y + σ2guΣug

′
u

where Σy is the unconditional variance of endogenous variables yt. The variance is
determined by a Lyapunov equation that is best solved by a specialized algorithm
(Bini et al., 2012).

To the extend that DSGE models are used to analyze fluctuations at business cycle
frequencies, the moments are often compared to empirical moments in the data after
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detrending by the Hodrick–Prescott filter. Uhlig (1999) provides formulas to compute
theoretical variances after removing the H-P trend.

Impulse responses functions (IRFs) can be evaluated directly, simply by running
forward equation (1.11), with u1 equal to the deterministic impulse and ut = 0, for
t > 1. This provides an average IRF where it is the effect of random shocks after the
first period that is averaged. Because the model is linear, it is equivalent to consider
the average effect of future shocks or the average shock equal to zero. Note also that,
in a linear model, the IRF is independent from the initial position at which the system
sits when the deterministic impulse is hitting.

1.4.1 Second order approximation of the model

A second order approximation brings two changes in comparison with a first order
approximation: first, the decision rules have the shape of parabolic curves instead of
straight lines and, most importantly, the certainty equivalence is broken.

In most cases, fitting the decision rules with parabolic curves instead of straight
lines brings only a moderate benefit and it is not true that a second order approxima-
tion is always more accurate than a first order one. Remember also that the Taylor
expansion of a function diverges outside its ratio of convergence (Judd, 1998).

Breaking the certainty equivalence is the most interesting qualitative benefit of
going to second order. It permits to address issues related to attitude toward risk, pre-
cautionary motive and risk premium, although in a very elementary manner: at second
order, the risk premium is a constant. If one wants a risk premium that varies with
the state of the system, it is necessary to consider least a third order approximation.

Considering a second order approximation is a natural step in a perturbation ap-
proach. It has been discussed in Collard and Juillard (2001), Kim et al. (2008), Sims
(2000), Gomme and Klein (2011). The computation of a second order approximation
is done on the basis of the first order approximation, adding the second order Taylor
coefficients to the solution function. As for the derivation of the first order approxi-
mation, we start with the second order approximation of the original model. However,
the derivation is mathematically simpler, because the selection of the locally stable
trajectory has been done at order 1.

A second order approximation of model (1.2) is given by

Et

{
F (2)(yt−1, ut, εt+1, σ)

}
= Et

{
F (1)(yt−1, ut, εt+1, σ)

+ 0.5
(
Fy−y−(ŷ ⊗ ŷ) + Fuu(u ⊗ u) + Fu′u′σ2(ǫ′ ⊗ ǫ′) + Fσσσ

2
)
+ Fy−u(ŷ ⊗ u)

+ Fy−u′(ŷ ⊗ σǫ′) + Fy−σ ŷσ + Fuu′ (u⊗ σǫ′) + Fuσuσ + Fu′σσǫ
′σ
}

where F (1)(yt−1, ut, εt+1, σ) represents the first order approximation in a compact
manner. From the derivation of the first order approximation, we know that Et

{
F (1)(yt−1, ut, εt+1, σ)

}
=

0.
The second order derivatives of the vector of functions, F (), are represented in the

following manner:



Solving stochastic models 15

∂2F

∂x∂x
=




∂2F1

∂x1∂x1

∂2F1

∂x1∂x2
. . . ∂2F1

∂x2∂x1
. . . ∂2F1

∂xn∂xn

∂2F2

∂x1∂x1

∂2F2

∂x1∂x2
. . . ∂2F2

∂x2∂x1
. . . ∂2F2

∂xn∂xn

...
...
. . .

...
. . .

...
∂2Fm

∂x1∂x1

∂2Fm

∂x1∂x2
. . . ∂2Fm

∂x2∂x1
. . . ∂2Fm

∂xn∂xn




It is easy to reduce the conditional expectation, but contrarily to what happens at
first order, the variance of future shocks remains after simplification:

Et

{
F (2)(yt−1, ut, εt+1, σ)

}
= Et

{
F (1)(yt−1, ut, εt+1, σ) + Fy−u(ŷ ⊗ u)

+ 0.5
[
Fy−y−(ŷ ⊗ ŷ) + Fuu(u ⊗ u) + Fu′u′σ2(ǫ′ ⊗ ǫ′) + Fσσσ

2
]

+ Fy−u′(ŷ ⊗ σǫ′) + Fy−σ ŷσ + Fuu′ (u⊗ σǫ′) + Fuσuσ + Fu′σσǫ
′σ
}

= 0.5
[
Fy−y−(ŷ ⊗ ŷ) + Fuu(u⊗ u) +

(
Fu′u′~Σε + Fσσ

)
σ2

]
+ Fy−u(ŷ ⊗ u)

+ Fy−σ ŷσ + Fuσuσ

= 0

where ~Σε represents the vectorization of the covariance matrix of the auxiliary shocks,
with the columns stacked on top of each other.

The only way for the above equation to be satisfied is when

Fyy = 0

Fyu = 0

Fuu = 0

Fy−σ = 0

Fuσ = 0

Fu′u′~Σε + Fσσ = 0

Each of these partial derivatives of function F () represents in fact the second order
derivatives of composition of the original function f() and one or two instances of the
solution function g(). The fact that each of the above partial derivatives must be equal
to zero provides the restrictions needed to recover the second order partial derivatives
of the solution function.

The second order derivative of the composition of two functions plays an important
role in what follows. Let’s consider the composition of two functions:

y = z(s)

f(y) = f(z(s))

then,



16 Dynamic stochastic general equilibrium models: A computational perspective

∂2f

∂s∂s
=

∂f

∂y

∂2g

∂s∂s
+

∂2f

∂y∂y

(
∂g

∂s
⊗

∂g

∂s

)
.

It is worth noting that the second order derivatives of vector of functions g() appear
in a linear manner in the final result, simply pre–multiplied by the Jacobian matrix of
functions f().

1.4.2 Recovering gyy

The second order derivatives of the solution function with respect to the endogenous
state variables, gyy, can be recovered from Fy−y− = 0. When one unrolls this expres-
sion, one obtains

Fy−y− = fy+ (gyy(gy ⊗ gy) + gygyy) + fy0gyy +B1

= 0

where B1 is a term that doesn’t contain the unknown second order derivatives of
function g(), but only first order derivatives of g() and first and second order derivatives
of f(). It is therefore possible to evaluate B1 on the basis of the specification of the
original equations and the results from first order approximation.

This equation can be rearranged:

(
fy+gy + fy0

)
gyy + fy+gyy(gy ⊗ gy) = −B1

It is linear in the unknown matrix gyy, but, given its form, can’t be solved efficiently by
usual algorithms for linear problems. Kamenik (2005) proposes an efficient algorithm
for this type of equation. As noted earlier, matrix fy+gy+fy0 is invertible under regular
assumptions.

1.4.3 Recovering gyu

Once gyy is known, its value can be used to determine gyu from Fyu = 0. Developing
the latter gives:

Fy−u = fy+ (gyy(gy ⊗ gu) + gygyu) + fy0gyu +B2

= 0

where B2 is again a term that doesn’t contain second order derivatives of g().
This is a standard linear problem and

gyu = −
(
fy+gy + fy0

)−1 (
B2 + fy+gyy(gy ⊗ gu)

)

1.4.4 Recovering guu

The procedure for recovering guu is very similar, using Fuu = 0:

Fuu = fy+ (gyy(gu ⊗ gu) + gyguu) + fy0guu +B3

= 0
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where B3 is a term that doesn’t contain second order derivatives of g(). This is a
standard linear problem and

guu = −
(
fy+gy + fy0

)−1 (
B3 + fy+gyy(gu ⊗ gu)

)

1.4.5 Recovering gyσ, guσ

As for first order, the partial cross–derivatives with only one occurrence of the stochas-
tic scale σ are null. The result is derived from Fyσ = 0 and Fuσ = 0 and uses the fact
that gσ = 0,

Fyσ = fy+gygyσ + fy0gyσ

= 0

Fuσ = fy+gyguσ + fy0guσ

= 0

Then,
gyσ = guσ = 0.

1.4.6 Recovering gσσ

Future uncertainty affects current decisions through the second derivative with respect

to the stochastic scale of the model, gσσ. It is recovered from
(
Fu′u′~Σε + Fσσ

)
σ2 = 0

Fσσ + Fu′u′Σǫ = fy+ (gσσ + gygσσ) + fy0gσσ +
(
fy+y+(gu ⊗ gu) + fy+guu

)
~Σǫ

= 0

taking into account that gσ = 0. Note that guu must have been determined before
deriving gσσ.

This is astandard linear problem:

gσσ = −
(
fy+(I + gy) + fy0

)−1 (
fy+y+(gu ⊗ gu) + fy+guu

)
~Σǫ

1.4.7 Approximated second order decision functions

The second order approximation of the solution function, g(), is given by

yt = ȳ+0.5gσσσ
2+gyŷt−1+guut+0.5 [gyy(ŷt−1 ⊗ ŷt−1) + guu(ut ⊗ ut)]+gyu(ŷt−1⊗ut)

Remember that σ and Σε were introduced as auxiliary devices to take into account
the effect of future uncertainty in the derivation of the approximated solution by
a perturbation method. They are related to the variance of the original shocks by
Σu = σ2Σε. It is therefore always possible to choose Σε = Σu and have σ = 1.

There exist no close form solution for the moments of the endogenous variables
when approximated at second order as each moment depends on all the moments of
higher order. As suggested by Kim et al. (2008), it is however possible to compute
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a second order approximation of these moments, by ignoring the contribution of mo-
ments higher than 2:

Σy = gyΣyg
′
y + σ2guΣǫg

′
u

E {yt} = ȳ +
1

2
(I − gy)

−1
(
gσσ + gyy~Σy + guu~Σǫ

)

The formula for the variance, Σy, depends only on the first derivatives of the solu-
tion function, g(). It is therefore the same as the variance derived for the first order
approximation of the solution function. On the contrary, the unconditional mean of
endogenous variables is affected by the variance of y and u and gσσ. It is different from
the mean obtained on the basis of a first order approximation

1.4.8 Higher–order approximation

Computing higher-order approximations doesn’t present additional mathematical dif-
ficulties compared with approximation at second order. The only computational diffi-
culty is with the management of a very large number of derivatives.

The core of the procedure is provided by the Faà di Bruno formula for the k-
th order of the composition of two functions in the multivariate case (Ma, 2009).
As above, let’s consider f(y) = f(z(s)). Given their high number of dimensions, we
represent derivatives of arbitrary order as tensors

∂jf i

∂sα1 . . . ∂sαj

=
[
F i
sj

]
α1...αj

,

∂ℓf i

∂yβ1, . . . ∂yβℓ

=
[
F i
yℓ

]
β1...βℓ

,

∂kzη

∂sγ1 , . . . ∂sγk

= [zsk ]
η
γ1...γk

,

and, following Einstein notation, we use the following convention to indicate a sum of
products along identical indices appearing first as subscript then as superscript of a
tensor (βi, . . . , βj in the following example):

[x]α1,...,αi

β1,...,βj
[y]β1,...,βj

γ1,...,γk
=

∑

β1

. . .
∑

βj

[x]α1,...,αi

β1,...,βj
[y]β1,...,βj

γ1,...,γk
.

The partial derivatives of f i(s) with respect to s is written as a function of the partial
derivatives of f i() with respect to y and the partial derivatives of z() with respect to
s:

[fsj ]
i
α1...αj

=

j∑

l=1

[fzl ]
i
β1...βl

∑

c∈Ml,j

l∏

m=1

[zs|cm| ]
βm

α(cm)

where Ml,j is the set of all partitions of the set of j indices with l classes, |.| is the
cardinality of a set, cm is m-th class of partition c, and α(cm) is a sequence of α’s
indexed by cm. Note that M1,j = {{1, . . . , j}} and Mj,j = {{1}, {2}, . . . , {j}}.
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The formula can easily be unfolded by hand for second or third order. For higher
order, the algorithm must be implemented in computer code, but it only requires loops
of sums of products and the computation of all partitions of a set of indices 3.

As already noted in the approximation at 2nd order, the highest order derivative
zsj always enters the expression linearly and is simply pre-multiplied by the Jacobian
matrix fz.

Our models involves the composition of the original equation and two instances
of the decision function. In order to recover the kth order derivatives of the decision
function, gyk , it is necessary to solve the following equation:

(
fy+gy + fy0

)
gyk + fy+gykg⊗k

y = −B

where g⊗k
y is the kth Kronecker power of matrix gy and B is a term that doesn’t contain

the unknown k-order derivatives of function g(), but only lower order derivatives of
g() and first to k-order derivatives of f(). It is therefore possible to evaluate B on the
basis of the specification of the original equations and the results from lower order
approximation.

The other k-order derivatives are solved for in analogous manner.

1.4.9 Assessing accuracy

As one obtains an approximated value of the solution function, it is important to assess
the accuracy of this approximation. Ideally, one would like to be able to compare the
approximated solution to the true solution or an approximated solution delivered by a
method known to be more accurate than local approximation. As we discussed above,
such solutions are only available for small models.

Judd (1992) suggests to perform error analysis by plugging the approximate solu-
tion, ĝ(), into the original model 1.1:

εt = Et

[
f (ĝ (ĝ (yt−1, ut, σ) , ut+1, σ) , g (yt−1, ut, σ) , ut)

]
.

where ut+1 is random from the point of view of the conditional expectation at period t.
The conditional expectation must be computed by numerical integration: for example,
by quadrature formula when there is a small number of shocks, or by monomial rule
or quasi Monte Carlo integration, for a larger number of shocks.

When it is possible to specify the equations of the model in such a way that the
error of an equation is expressed in an interpretable unit, it provides a scale on which
evaluating the relative importance of errors. Judd (1992) uses the example of the Euler
equation for the consumption choice of the household that can be written so that the
error appears in units of consumption.

3dynare++, written by Ondra Kamenik, available at http://www.dynare.org/
documentation-and-support/dynarepp, and perturbationAIM, written by Eric Swanson, Gary
Anderson and Andrew Levin, available at http://www.ericswanson.us/perturbation.html use such a
formula to compute solutions of a DSGE model at arbitrary order.
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1.5 Estimation

The above discussion of solution techniques for DSGE models assumed that the value
of the model parameters was known. In practice, this knowledge can only be inferred
from observation of the data.

In earlier real business cycle tradition, following Kydland and Prescott (1982),
parameters were calibrated. A main idea of the calibration approach is to choose
parameter values from microeconometric studies and to fix free parameters so as to
reproduce moments of interest in the aggregate data. See Kydland and Prescott (1996);
Hansen and Heckmanm (1996); Sims (1996) for a critical discussion of this approach.

Calibration methodology has the advantage to explicit the focus of analysis to some
aspect of the data that the model must reproduce. Its major shortcoming is probably
the absence of measure of uncertainty surrounding the chosen calibration.

The Bayesian paradigm proposes an formal way to track a priori information that
is used in estimation and it is not surprising it became in recent years the dominant
approach in quantitative macroeconomics. Canova (2007), DeJong and Dave (2011),
Geweke (2005) provide in depth presentations of this approach. Schorfheide (2000) is
one of the first applications of Bayesian methodology to the estimation of a DSGE
model and An and Schorfheide (2007) provides a detailed discussion of the topic.

Because the use of informative priors sidesteps the issue of identification, it fa-
cilitates in practice computation, avoiding problems encountered in numerical opti-
mization to find maximum likelihood when a parameter is weakly identified by the
data.

From a methodological point of view, one can consider that the Bayesian approach
builds a bridge between calibration and classical estimation: using very tight priors is
equivalent to calibrating a model while uninformative priors provide results similar to
classical estimation.

Uncertainty and a priori knowledge about the model and its parameters are de-
scribed by the prior probability distribution. Confrontation with the data leads to a
revision of these probabilities in the form of the posterior probability distribution.

The Bayesian approach implies several steps. First choosing the prior density for
the parameters. This requires care, because it is not always obvious how to trans-
late informal a priori information into a probability distribution and, in general, the
specification of the priors has an influence on the results.

The second step is the computation of the posterior distribution. It is very demand-
ing computationally. As a DSGE estimated model is nonlinear in the parameters, there
is no hope for conjugate priors and the shape of the posterior distribution is unknown.
It can only be recovered by simulation, using Monte Carlo Markov Chain (MCMC)
methods. Often, the simulation of the posterior distribution is preceded by the com-
putation of the posterior mode that requires numerical optimization.

When one has obtained MCMC generated sample of draws from the posterior,
it is possible to compute point estimates by minimizing an appropriate loss function
and corresponding confidence regions.The MCMC sample is also used to compute the
marginal density of the model, that is used for model comparison, and the posterior
distribution of various results of the model such as IRFs or forecasts.

In order to fix ideas, let’s write the prior density of the estimated parameters of the
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model as p(θA|A) where A represents the model and θA, the estimated parameters of
that model. It helps to keep an index of the model in order to, later, engage in model
comparison. The vector of estimated parameters, θA, may contain not only structural
parameters of the model, but also the parameters describing the distribution of the
shocks in that model.

The prior density describes a priori beliefs, before considering the data. In the
DSGE literature, traditional sources of prior information are microeconomic estima-
tions, previous studies or studies conducted on similar countries. This information
helps typically to set the center of the prior distribution for a given parameter. The
determination of the dispersion of the prior probability is more subjective and quan-
tifies the uncertainty attached to the prior information.

The model itself specifies the probability distribution of a sequence of observable
variables, conditional on the value of the parameters, p(YT |θA, A), where YT represents
the sequence y1, . . . , yT . As we are dealing with a dynamic model, this density can be
written as the product of a sequence of conditional densities:

p(YT |θA, A) = p(y1|θA, A)

T∏

t=1

p(yt|Yt−1, θA, A).

Once we dispose of a sample of observations, YT , it is possible to define the likelihood
of the model as a function of the estimated parameters, conditional on the value of
the observed variables:

L(θA|YT , A) = p(YT |θA, A).

Using Bayes theorem, one obtains the posterior distribution of the estimated param-
eters:

p(θA|YT , A) =
p(θA|A)p(YT |θA, A)∫
ΘA

p(YT , θA|A)dθA

The posterior distribution expresses how the prior information is combined with the
information obtained from the data to provide an updated distribution of possible
values for the estimated parameters.

The denominator of the posterior is a scalar, the marginal density, that plays the
role of a normalizing factor. We write

p(YT |A) =

∫

ΘA

p(YT , θA|A)dθA

=

∫

ΘA

p(YT |θA, A)p(θA|A)dθA

The marginal density is useful for model comparison, but its knowledge is not required
for several other computations such as computing the posterior mode, running the
MCMC simulation, or computing the posterior mean. In such cases, it is sufficient to
evaluate the posterior density kernel :

p(θA|A)p(YT |θA, A) ∝ p(θA|YT , A).
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The essential output of the Bayesian methodology is to establish the posterior
distribution of the estimated parameters. However, this multi–dimensional distribution
may be too much information to handle for the user of the model and there is the need
to convey the results of estimation in the form of point estimates.

Given the posterior density of the parameters and the loss function of the model’s
user, a point estimate is determined by

θ̂A = argmin
θ̃A

∫

ΘA

L(θ̃A, θA)p(θA|YT , A)dθA.

It minimizes the expected loss over the posterior distribution. The loss itself is defined
as the loss incurred by retaining θ̃A as point estimate when the true parameter value
is θA.

In economics, it is often difficult to establish the exact loss function in the context
of model estimation. However, there exist general results that guide common practice:

• when the loss function is quadratic, the posterior mean minimizes expected loss;

• when the loss function is proportional to the absolute value of the difference
between estimate and true value of the parameter, the posterior median minimizes
this loss function;

• the posterior mode minimizes a loss function of the form 0 or 1: when the estimate
coincides with the true value of the parameter the loss is null and the loss is
constant for all other values.

This justifies the common usage of reporting the posterior mean of the parameters.
It is also useful to be able to communicate the uncertainty surrounding a point

estimate. This is done with credible sets, that take into account that the posterior
distribution is not necessarily symmetrical:

P (θ ∈ C) =

∫

C

p(θ|YT , A)dθ = 1− α

is a 100(1 − α)% credible set for θ with respect to p(θ|Y,A). Obviously, there is an
infinity of such sets for a given distribution. It makes sense to choose the most likely.

A 100(1−α)% highest probability density (HPD) credible set for θ with respect to
p(θ|YT , A) is a 100(1− α)% credible set with the property

p(θ1|YT , A) ≥ p(θ2|YT , A) ∀θ1 ∈ C and ∀θ2 ∈ C̄

where C̄ represents the complement to C. When the distribution is uni-modal, the
credible set is unique.

Estimating parameters is an important part of empirical research. It permits in
particular to quantify the intensity of a given economic mechanism. But, it is rarely
the end of story. Based on the estimated value of parameters, one is also interested in
other quantifiable results from a model, such as moments of the endogenous variables,
variance decomposition, IRFs, shocks decomposition or forecasts. All these objects are
conditional on the value of the parameters and, for the two last ones, on the observed
variables. Very abstractly, these post-estimation computations can be represented as a
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function of parameters and observations, Ỹ = h(YT , θ), where Ỹ can be either a scalar,
a vector or a matrix, depending on the actual computation. Given the uncertainty
surrounding parameter estimates, it is legitimate to consider the posterior distribution
of such derived statistics.

The posterior predictive density is given by

p(Ỹ |YT , A) =

∫

ΘA

p(Ỹ , θA|YT , A)dθA

=

∫

ΘA

p(Ỹ |θA, YT , A)p(θA|YT , A)dθA

1.5.1 Model comparison

Comparing two models is done on the basis of the comparison of their marginal density.
When the investigator has a prior on the relative likelihood of one model versus an-
other, the comparison should be done on the basis of the ratio of posterior probabilities
or posterior odds ratio. When she considers that all the models under consideration
are equally likely, the comparison can be done simply with the Bayes factor.

The ratio of posterior probabilities of two models is

P (Aj |YT )

P (Ak|YT )
=

P (Aj)

P (Ak)

p(YT |Aj)

p(YT |Ak)

In favor of the model Aj versus the model Ak:

• the prior odds ratio is P (Aj)/P (Ak)

• the Bayes factor is p(YT |Aj)/p(YT |Ak)

• the posterior odds ratio is P (Aj |YT )/P (Ak|YT )

The interpretation of posterior odds ratio may be delicate. Jeffreys (1961) proposes
the following scale for a posterior odds ratio in favor of a model:

1− 3 : the evidence is barely worth mentioning

3− 10 : the evidence is substantial

10− 30 : the evidence is strong

30− 100 : the evidence is very strong

> 100 : the evidence is decisive

1.5.2 Bayesian estimation of DSGE models

The application of the Bayesian methodology to the estimation of DSGE models raises
a few issues linked to the adaptation of the concepts presented above to the DSGE
context.

1.5.2.1 Priors.

Estimated parameters are the parameters of the structural models, but also the stan-
dard deviation of structural shocks or measurement errors and, sometimes, their cor-
relation.
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Independent priors are specified for each of these parameters as well as the implicit
constraint that the value of the parameters must be such that Blanchard and Kahn
condition for the existence of a unique stable trajectory is satisfied. It is important
that the priors for individual parameters be chosen in such a way as to minimize
the set of parameter values excluded by the constraint of a unique, stable trajectory
because the existence of a large hole in the parameter space specified by the individual
priors makes finding the posterior mode and running the MCMC algorithm much more
complicate. It also creates problems for the numerical integration necessary to compute
the marginal density of the model.

However, some authors have tried to estimate a model while selecting solutions in
the indeterminacy region. See, for example, Lubik and Schorfheide (2004).

The most common in the literature is to use independent priors for parameters.
However, such choice is often not without consequences on the estimation results.
Alternatively, Del Negro and Schorfheide (2008), for example, derive joint priors for
the parameters that affect the steady state of the model.

1.5.2.2 Likelihood.

From a statistical point of view, estimating a DSGE model is estimating an unobserved
component model: not all the variables of the DSGE model are indeed observed. In fact,
because, in general, DSGE models have more endogenous variables than stochastic
shocks, some variables are linked by deterministic relationships. It does not make
sense to include several co–dependent variables in the list of observed variables.

In fact, unless the variables co–dependent in the model are also linked by a deter-
ministic relationship in the real world, the relationship embodied in the model will not
be reflected in the observed variables without the model providing a stochastic shock
to account for this discrepancy. This is the problem of stochastic singularity (Sargent,
1989).

The unobserved components framework suggests to use a state space representation
for the estimated model (Soderlind, 1999). The measurement equation is

y⋆t = ȳ⋆ +Mŷt + ηt

where y⋆t is the vector of observed variables in period t, ȳ⋆, the steady state value of
the observed variables. M is a selection matrix, ŷt is the vector of centered endogenous
variables in the model and ηt a vector of measurement errors.

The transition equation is simply given by the first order approximation of the
model:

ŷt = gy(θ)ŷt−1 + gu(θ)ut

where ut is a vector of structural shocks and gy(θ) and gu(θ) are the matrices of reduced
form coefficients obtained via the real generalized Schur decomposition. Note that the
reduced form coefficients are non-linear functions of the structural parameters.

We further assume that
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E (utu
′
t) = Q,

E (ηtη
′
t) = V,

E (utη
′
t) = 0.

1.5.2.3 The Kalman filter.

Given the state space representation introduced above, the Kalman filter computes
recursively, for t = 1, . . . , T :

vt = y∗t − ȳ⋆ −Mŷt|t−1,

Ft = MPt|t−1M
′ + V,

Kt = Pt|t−1g
′
yF

−1
t ,

ŷt+1|t = gy
(
ŷt|t−1 +Ktvt

)
,

Pt+1|t = gy (I −KtM)Pt|t−1g
′
y + guQg′u,

where gy = gy(θ) and gu = gu(θ) and with y1|0 and P1|0 given. Here ŷt|t−1 is the
one period ahead forecast of endogenous variables, conditional on the information
contained in observed variables until period t− 1.

The log-likelihood is obtained on the basis of the one-step ahead forecast errors,
vt, and the corresponding co-variance matrix, Ft:

lnL (θ|Y ∗
T ) = −

Tk

2
ln(2π)−

1

2

T∑

t=1

ln |Ft| −
1

2
v′tF

−1
t vt,

where k is the number of estimated parameters. The logarithm of the posterior density
is then easily computed by adding the logarithm of the prior density.

The posterior mode is usually computed numerically by hill climbing methods, but
may be difficult to compute in practice.

1.5.2.4 Metropolis algorithm.

As already mentioned, the posterior density function of DSGE models is not analytic.
It must be recovered by MCMC algorithm.

The posterior density of DSGE models doesn’t have enough structure to make it
possible to use Gibbs sampling and the algorithm of choice in practice is Metropolis
algorithm.

A common implementation of the algorithm in our context is as follows. We choose
first as proposal distribution a multi-normal density with co-variance matrix, Σmode,
proportional to the one inferred from the Hessian matrix at the mode of the posterior
density. An other choice of proposal is possible. See for example Chib and Ramamurthy
(2010) for an alternative approach.

The Metropolis algorithm is made of the following steps:

1. Draw a starting point θ◦ with p(θ) > 0 from a starting distribution p◦(θ).

2. For t = 1, 2, . . .
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(a) Draw a proposal θ∗ from a jumping distribution:

J(θ∗|θt−1) = N(θt−1, cΣmode)

(b) Compute the acceptance ratio

r =
p(θ∗)

p(θt−1)

(c) Set

θt =

{
θ∗ with probability min(r, 1)
θt−1 otherwise.

The random sample generated by the Metropolis algorithm depends upon initial con-
ditions. It is necessary to drop the initial part of the sample before proceeding with
analysis. Dropping the first 30% or 50% of the sample is common in the literature.

Intuitively, one can see that an average acceptance rate very high or very low is
not desirable. A high average acceptance rate means that the posterior density value
at the proposal point is often close to the posterior density at the current point. The
proposal point must not be very far from the current point. The Metropolis algorithm
is making small steps, and traveling the entire distribution will take a long time.

On the other hand, when the proposal point is very far away from the current
point, chances are that the proposal point is in the tail of the distribution and the
proposal point is rarely accepted: the average acceptance rate is very low and, again,
the Metropolis algorithm will take a long time to travel the distribution. The current
consensus view is that aiming for an average acceptance rate close to 25% is nearly
optimal (Roberts and Rosenthal, 2001).

The scale factor of the co-variance matrix of the proposal, c, helps tuning the
average acceptance rate: increasing the size of this co-variance matrix leads to a smaller
average acceptance rate.

It is difficult to know a priori how many iterations of the Metropolis algorithm are
necessary before one can consider that the generated sample is representative of the
target distribution. Various diagnostic tests are proposed in the literature to assess
whether convergence is reached (Mengersen et al., 1999).

1.5.2.5 Numerical integration.

Computing point estimates such as the mean value of the estimated parameters under
the posterior distribution and other statistics or computing the marginal data density
require to compute a multi–dimensional integral involving the posterior density for
which we don’t have an analytic formula.

Once we have at our disposal a sample of N points, drawn in the posterior dis-
tribution thanks to the Metropolis algorithm, it is easy to compute the mean of the
parameters or of a function of the parameters. It is simply the average mean of the
function of the parameters at each point of the sample:
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E(h(θA)) =

∫

ΘA

h(θA)p(θA|YT , A)dθA

≈
1

N

N∑

k=1

h(θkA)

where θkA is drawn from p(θA|YT , A).
Computing the marginal density of the model

∫

ΘA

p(y|θA, A)p(θA|A)dθA

turns out to be more involved numerically.
The first approach is to use the normal approximation provided by Laplace’s

method. It can be computed after having determined the posterior mode:

p̂(YT |A) = (2π)
k
2 |ΣθM |−

1
2 p(θMA |YT , A)p(θ

M
A |A)

where θMA is the posterior mode and k the number of estimated parameters (the size
of vector θA). The covariance matrix ΣθM is derived from the inverse of the Hessian
of the posterior distribution evaluated at its mode.

A second approach, referred to as modified harmonic mean, is proposed by Geweke
(1999) and makes use of the Metropolis sample:

p(YT |A) =

∫

θA

p(θA|YT , A)p(θA|A)dθA

p̂(YT |A) =

[
1

n

n∑

i=1

f(θ
(i)
A )

p(θ
(i)
A |YT , A)p(θ

(i)
A |A)

]−1

f(θ) = p−1(2π)
k
2 |Σθ|

− 1
2 exp

{
−
1

2
(θ − θ)′Σθ

−1(θ − θ)

}

×
{
(θ − θ)′Σθ

−1(θ − θ) ≤ F−1
χ2
k
(p)

}

with p, an arbitrary probability and, k, the number of estimated parameters. In prac-
tice, the computation is done for several values of the threshold probability, p. The
fact that the result remains close when p is varying is taken as a sign of the robustness
of the computation.

1.6 Available software

Several software products, some free, some commercial, implement the algorithms
described above. Here is a partial list:
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Name Reference and web site
AIM Anderson and Moore (1985)

http://www.federalreserve.gov/pubs/oss/oss4/about.html

Dynare Adjemian et al. (2013)
http://www.dynare.org

dynare++ Kamenik (2011)
http://www.dynare.org

Iris toolbox IRIS Solution Team (2013)
http://code.google.com/p/iris-toolbox-project

JBenge Winschel and Krätzig (2010)
http://jbendge.sourceforge.net

PerturbationAIM Swanson et al. (2005)
http://www.ericswanson.us/perturbation.html

RATS www.estima.com

Schmitt-Grohé and Uribe Schmitt-Grohe and Uribe (2004)
http://www.columbia.edu/∼mu2166/2nd order.htm

TROLL http://www.intex.com/troll

Uhlig’s toolkit Uhlig (1999)
http://www2.wiwi.hu-berlin.de/institute/wpol/html/toolkit.htm

WinSolve Pierse (2007)
http://winsolve.surrey.ac.uk

YADA Warne (2013)
http://www.texlips.net/yada

1.7 New directions

DSGE modeling is a field that advances rapidly with continuous innovations. While
linear approximation of the models and estimation of these linearized models seemed
sufficient to describe the functioning of the economy in normal times, several recent
developments make new demands on methods used to solve and estimate DSGE mod-
els.

Several important non-linear mechanisms have been put in focus by the Great
Recession, such as the zero lower bound for nominal interest rate or debt deflation
and sudden stops (Mendoza and Yue, 2011). These developments renewed interest for
non–linear solution and estimation methods.

The necessity to integrate financial aspects into the models requires to move away
from a unique representative agents. Introducing a discrete number of agents with
different characteristics only calls for bigger models, not different solution methods, but
dealing with the distribution of an infinite number of agents is a much more complex
issue. Krusell and Smith (1998) and, more recently, Algan et al. (2010), Den Haan
and Rendahl (2010), Kim et al. (2010), Maliar et al. (2010), Reiter (2010), and Young
(2010) attempt to provide solution for the type of heterogeneous agent models where
the distribution of agents becomes a state variable.

With the multiplication of questions that are addressed with DSGE models, the
size of models increased as well. Nowadays, large multi–country models developed at
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international institutions, such as EAGLE at the European System of Central Banks
(Gomes et al., 2010), GIMF at the IMF (Kumhof et al., 2010), or QUEST at the
European Commission (Ratto et al., 2009) have more than a thousand equations and
it is still necessary to develop faster solution algorithms and implementations and,
more importantly, faster estimation methods as it is the current bottleneck.

The arrival of new, massively parallel, hardware such as GPUs on the desktop of
economists pushes back the frontier of computing and open new perspective, but many
algorithms need to be reconsidered to take advantage of parallel computing.
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