forked from sys-bio/temp-biomodels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fix_copasi_algorithms.py
132 lines (111 loc) · 5.11 KB
/
fix_copasi_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import copy
import glob
import libsedml
import lxml.etree
import os
def get_algorithms(dirname):
filenames = sorted(glob.glob(os.path.join(dirname, '**', '*.cps'), recursive=True))
time_course_method_types = {}
parameters = {}
for filename in filenames:
root = lxml.etree.parse(filename).getroot()
namespaces = {'copasi': root.nsmap[None]}
time_course_method = root.xpath(
'/copasi:COPASI/copasi:ListOfTasks/copasi:Task[@type="timeCourse"]/copasi:Method', namespaces=namespaces)[0]
time_course_method_type = time_course_method.attrib['type']
if time_course_method_type not in time_course_method_types:
time_course_method_types[time_course_method_type] = []
time_course_method_types[time_course_method_type].append(filename)
for copasi_param in time_course_method.xpath('copasi:Parameter', namespaces=namespaces):
copasi_param_type = copasi_param.attrib['type']
if copasi_param_type == 'bool':
value = copasi_param.attrib['value'] == '1'
elif copasi_param_type in ['integer', 'unsignedInteger']:
value = int(copasi_param.attrib['value'])
elif copasi_param_type in ['float', 'unsignedFloat']:
value = float(copasi_param.attrib['value'])
else:
raise Exception('{}: {}'.format(filename, copasi_param.attrib['name']))
parameter_name = copasi_param.attrib['name']
if parameter_name not in parameters:
parameters[parameter_name] = {}
if value not in parameters[parameter_name]:
parameters[parameter_name][value] = []
parameters[parameter_name][value].append(filename)
non_lsoda_filenames = set()
for time_course_method_type, filenames in time_course_method_types.items():
if time_course_method_type != 'Deterministic(LSODA)':
non_lsoda_filenames.update(filenames)
return time_course_method_types, parameters
ALGORITHMS = {
os.path.join('BIOMD0000000569', 'Dutta-Roy2015.sedml'): 'KISAO_0000027',
os.path.join('BIOMD0000000926', 'Rhodes2019-Immune-Mediated theory of Metastasis.sedml'): 'KISAO_0000566',
os.path.join('BIOMD0000000952', 'Rodenfels2019_V1.sedml'): 'KISAO_0000304',
os.path.join('BIOMD0000000732', 'Kirschner_1998.sedml'): 'KISAO_0000694',
}
DEFAULT_PARAMETERS = {
'KISAO_0000027': {
'KISAO_0000415': '1000000',
'KISAO_0000488': None,
},
'KISAO_0000694': {
'KISAO_0000571': '1e-12',
'KISAO_0000216': 'false',
'KISAO_0000415': '10000',
'KISAO_0000467': None,
'KISAO_0000209': '1e-6',
},
'KISAO_0000304': {
'KISAO_0000571': '1e-6',
'KISAO_0000559': '0.001',
'KISAO_0000216': 'false',
'KISAO_0000415': '1000000000',
'KISAO_0000209': '1e-4',
},
'KISAO_0000566': {
'KISAO_0000561': '1e-6',
'KISAO_0000565': '1e-6',
'KISAO_0000567': 'true',
'KISAO_0000415': '100',
'KISAO_0000483': '0.0001',
},
}
ALT_PARAMETERS = {
os.path.join('BIOMD0000000627', 'BIOMD0000000627.sedml'): {
'KISAO_0000467': '1',
},
os.path.join('BIOMD0000000718', 'Li2008_reactions.sedml'): {
'KISAO_0000216': 'true',
},
os.path.join('BIOMD0000000723', 'Weis2014.sedml'): {
'KISAO_0000216': 'true',
},
}
def run(id, dirname):
if not glob.glob(os.path.join(dirname, '**', '*.cps'), recursive=True):
return
time_course_method_types, parameters = get_algorithms(dirname)
sedml_filenames = glob.glob(os.path.join(dirname, '**', '*.sedml'), recursive=True)
sedml_filenames.sort()
for sedml_filename in sedml_filenames:
rel_sedml_filename = os.path.relpath(sedml_filename, dirname)
algorithm_kisao_id = ALGORITHMS.get(os.path.join(id, rel_sedml_filename), 'KISAO_0000694')
doc = libsedml.readSedMLFromFile(sedml_filename)
for simulation in doc.getListOfSimulations():
if isinstance(simulation, libsedml.SedUniformTimeCourse):
algorithm = simulation.getAlgorithm()
algorithm.setKisaoID(algorithm_kisao_id)
if algorithm.getNumAlgorithmParameters() > 0:
continue
#Otherwise, put in the default parameters.
parameter_values = copy.copy(DEFAULT_PARAMETERS[algorithm_kisao_id])
for parameter_kisao_id, value in ALT_PARAMETERS.get(os.path.join(id, rel_sedml_filename), {}).items():
parameter_values[parameter_kisao_id] = value
if algorithm_kisao_id == 'KISAO_0000694':
parameter_values['KISAO_0000415'] = str(sorted(list(parameters['Max Internal Steps'].keys()))[-1])
for parameter_kisao_id, value in parameter_values.items():
if value is not None:
algorithm_parameter = algorithm.createAlgorithmParameter()
algorithm_parameter.setKisaoID(parameter_kisao_id)
algorithm_parameter.setValue(value)
libsedml.writeSedML(doc, sedml_filename)