-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresnet.py
86 lines (72 loc) · 2.75 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
from torch import nn
from deepr.model.activations import Swish
class ResidualBlock(nn.Module):
"""
Residual block.
A residual block has two convolution layers with group normalization.
Each resolution is processed with two residual blocks.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
time_channels: int,
n_groups: int = 8,
dropout: float = 0.1,
):
"""CNN block with Group Normalization, Swish activation, and Conv. layers.
The block takes input channel values, output channel values, time channels,
number of groups (n_groups), and dropout rate as parameters.
Parameters
----------
in_channels: int
Number of input channels.
out_channels: int
Number of output channels.
time_channels: int
Number of time channels.
n_groups: int, optional (default=`32`)
Number of groups.
dropout: float, optional (default=`0.1`)
Dropout rate.
"""
super().__init__()
# Group normalization and the first convolution layer
self.norm1 = nn.GroupNorm(n_groups, in_channels)
self.act1 = Swish()
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=(3, 3), padding=(1, 1)
)
# Group normalization and the second convolution layer
self.norm2 = nn.GroupNorm(n_groups, out_channels)
self.act2 = Swish()
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=(3, 3), padding=(1, 1)
)
# If the number of input channels is not equal to the number of output channels
# we have to project the shortcut connection
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 1))
# Linear layer for time embeddings
self.time_emb = nn.Linear(time_channels, out_channels)
self.time_act = Swish()
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, t: torch.Tensor):
"""Forward pass.
Parameters
----------
x : torch.Tensor
Input vector with shape `[batch_size, in_channels, height, width]`.
t : torch.Tensor
Time vector `[batch_size, time_channels]`.
Returns
-------
torch.Tensor: vector with shape `[batch_size, out_channels, height, width]`.
"""
h = self.conv1(self.act1(self.norm1(x)))
h += self.time_emb(self.time_act(t))[:, :, None, None]
h = self.conv2(self.dropout(self.act2(self.norm2(h))))
if hasattr(self, "shortcut"):
h += self.shortcut(x)
return h