Create a conda environment and install required packages from scratch following the steps below
conda create -n pytorch160 python=3.7
conda activate pytorch160
conda install pytorch=1.6.0 torchvision cudatoolkit=10.1.243 -c pytorch
conda install -c anaconda pandas
conda install -c anaconda h5py
conda install -c anaconda scipy
conda install -c conda-forge tensorboardx
conda install -c anaconda joblib
conda install -c conda-forge matplotlib
conda install -c conda-forge urllib3
If you use the canonical annotation files, you need to first convert them by removing unused categories and video clips
python Convert_annotation.py
python Train.py --use_xGPN --is_train true --dataset ego4d --feature_path {DATA_PATH} --checkpoint_path {CHECKPOINT_PATH} --batch_size 32 --train_lr 0.0001
python Infer.py --use_xGPN --is_train false --dataset ego4d --feature_path {DATA_PATH} --checkpoint_path {CHECKPOINT_PATH} --output_path {OUTPUT_PATH}
python Eval.py --dataset ego4d --output_path {OUTPUT_PATH} --out_prop_map {OUT_PMAP} --eval_stage all
python Merge_detection_retrieval.py
This codebase is built on VSGN.
Please also consider citing VSGN if you use this codebase.
@inproceedings{zhao2021video,
title={Video self-stitching graph network for temporal action localization},
author={Zhao, Chen and Thabet, Ali K and Ghanem, Bernard},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={13658--13667},
year={2021}
}