-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
58 lines (47 loc) · 1.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import time
from options.train_options import TrainOptions
from data.dataloader import CreateDataLoader
from util.visualizer import Visualizer
from models.solver import SoloGAN
opt = TrainOptions().parse()
dataset_name = opt.name
opt.dataroot = '{}/{}'.format(opt.dataroot, dataset_name)
data_loader = CreateDataLoader(opt)
dataset_size = len(data_loader) * opt.batchSize
visualizer = Visualizer(opt)
model = SoloGAN()
model.initialize(opt)
def train():
total_steps = 0
D_lr = opt.D_lr
G_lr = opt.G_lr
total_epoch = opt.niter + opt.niter_decay + 1
for epoch in range(1, total_epoch):
epoch_start_time = time.time()
save_result = True
for i, data in enumerate(data_loader):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter = total_steps - dataset_size * (epoch - 1)
model.update_model(data)
t = (time.time() - iter_start_time)
print('epoch: {}/{}, iters={}: time={}'.format(epoch, total_epoch, i, t))
if save_result or total_steps % opt.display_freq == 0:
save_result = save_result or total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result)
save_result = False
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save('latest')
model.save(epoch)
if epoch > opt.niter:
D_lr -= opt.D_lr / opt.niter_decay
G_lr -= opt.G_lr / opt.niter_decay
model.update_lr(D_lr, G_lr)
model.save('latest')
model.save(epoch)
if __name__ == '__main__':
train()