diff --git a/moosez/moosez.py b/moosez/moosez.py index 58d0902..e22d964 100644 --- a/moosez/moosez.py +++ b/moosez/moosez.py @@ -488,14 +488,28 @@ def moose_subject(subject: str, subject_index: int, number_of_subjects: int, mod SimpleITK.WriteImage(resampled_segmentation, segmentation_image_path) output_manager.log_update(f" - Prediction complete for {model_workflow.target_model} within {round((time.time() - model_time_start)/ 60, 1)} min.") - # ---------------------------------- - # EXTRACT VOLUME STATISTICS - # ---------------------------------- - output_manager.spinner_update(f'[{subject_index + 1}/{number_of_subjects}] Extracting CT volume statistics for {subject_name} ({model_workflow.target_model})...') + # ----------------------------------------------- + # EXTRACT VOLUME STATISTICS AND HOUNSFIELD UNITS + # ----------------------------------------------- + output_manager.spinner_update( + f'[{subject_index + 1}/{number_of_subjects}] Extracting CT volume statistics for {subject_name} ({model_workflow.target_model})...') output_manager.log_update(f' - Extracting volume statistics for {model_workflow.target_model}') - out_csv = os.path.join(stats_dir, model_workflow.target_model.multilabel_prefix + subject_name + '_ct_volume.csv') - image_processing.get_shape_statistics(resampled_segmentation, model_workflow.target_model, out_csv) - output_manager.spinner_update(f'{constants.ANSI_GREEN} [{subject_index + 1}/{number_of_subjects}] CT volume extracted for {subject_name}! {constants.ANSI_RESET}') + out_vol_stats_csv = os.path.join(stats_dir, + model_workflow.target_model.multilabel_prefix + subject_name + '_ct_volume.csv') + image_processing.get_shape_statistics(resampled_segmentation, model_workflow.target_model, + out_vol_stats_csv) + output_manager.spinner_update( + f'{constants.ANSI_GREEN} [{subject_index + 1}/{number_of_subjects}] CT volume extracted for {subject_name}! {constants.ANSI_RESET}') + time.sleep(1) + output_manager.spinner_update( + f'[{subject_index + 1}/{number_of_subjects}] Extracting CT hounsfield statistics for {subject_name} ({model_workflow.target_model})...') + output_manager.log_update(f' - Extracting hounsfield statistics for {model_workflow.target_model}') + out_hu_stats_csv = os.path.join(stats_dir, + model_workflow.target_model.multilabel_prefix + subject_name + '_ct_hu_values.csv') + image_processing.get_intensity_statistics(image, resampled_segmentation, model_workflow.target_model, + out_hu_stats_csv) + output_manager.spinner_update( + f'{constants.ANSI_GREEN} [{subject_index + 1}/{number_of_subjects}] CT hounsfield statistics extracted for {subject_name}! {constants.ANSI_RESET}') time.sleep(1) # ---------------------------------- diff --git a/setup.py b/setup.py index 69c5e81..4967c6f 100644 --- a/setup.py +++ b/setup.py @@ -3,7 +3,7 @@ setup( name='moosez', - version="3.0.6", + version="3.0.7", author='Lalith Kumar Shiyam Sundar | Sebastian Gutschmayer | Manuel Pires', author_email='Lalith.shiyamsundar@meduniwien.ac.at', description='An AI-inference engine for 3D clinical and preclinical whole-body segmentation tasks',