-
Notifications
You must be signed in to change notification settings - Fork 0
/
Exploration of participant's chem data.R
514 lines (424 loc) · 20.8 KB
/
Exploration of participant's chem data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
##Title: Exploration of participant's chem data
##Author: Emily Oosterhout
## setwd('C:/DATA FOOD COMPONENT ANALYSIS/RP2_ChemIBDFood')
##
setwd('C:/DATA FOOD COMPONENT ANALYSIS/RP2_ChemIBDFood')
##========================= LOAD DATA AND IMPORT LIBRARIES =============================##
#Import libraries
library(readxl)
library(dplyr)
library(tidyverse)
library(data.table)
library(reshape2)
library(ggplot2)
library(ggbreak)
library(patchwork)
library(rlang)
library(writexl)
#packages for testing/visualizing data distribution
library(ggpubr)
library(FSA)
library(ggsignif)
library(ggrepel)
#specific packages for PCA
library(ggfortify)
library(corrr)
library(corrplot)
library(factoextra)
library(MASS)
library(Hotelling)
# Load data
chem_part <- read_xlsx('chem_raw_participant.xlsx')
chem <- read_xlsx('transposed_ffqchem_V2.xlsx')
diet_raw <- read_xlsx('diet_raw_v2.xlsx')
##=============================== CLEANING AND SUBSETTING ==============================##
names(chem_part) = gsub(pattern = ":", replacement = "_", x = names(chem_part))
# Subset full participant intake to IBD and LLDEEP
IBD <- chem_part[chem_part$UMCGIBDResearchIDorLLDeepID %like% "UMCGIBD",]
LLDEEP <- chem_part[chem_part$UMCGIBDResearchIDorLLDeepID %like% "LLDeep",]
#Only chem intake IBD and LLDEEP
IBD_chem <- IBD[,7:1114]
LLDEEP_chem <- LLDEEP[,7:1114]
# Identify IBD participants
IBD_ID <- as.character(IBD$UMCGIBDResearchIDorLLDeepID)
# Create a new column specifying the group for each sample
chem_part$group <- ifelse(chem_part$UMCGIBDResearchIDorLLDeepID %in% IBD_ID, "IBD", "LLDEEP")
num_dat <- chem_part[,7:1114] #only selecting numerical from chem_part
chem_names <- colnames(num_dat)
##============================ SCALING OF RAW CHEM_PART ==============================##
## Common scaling methods are
# Autoscaling (also known as standardization), where the responses for each variable are centered by subtracting its mean value and then divided by its standard deviation
# Pareto scaling, where the mean-centered values are divided by the square root of the standard deviation.
# Calculate the percentage of non-zero values for each variable
non_zero_pct <- apply(num_dat != 0, 2, mean)
# Filter variables with at least a non-zero value in 10% of the data
filter_10pct <- num_dat[,non_zero_pct >= 0.1]
# Filter variables with at least a non-zero value in 20% of the data
filter_20pct <- num_dat[,non_zero_pct >= 0.2]
#add pseudocount to all variables and perform log-transformation
pseudo_chem <- filter_20pct + 1
log_chem <- as.data.frame(log(pseudo_chem))
##=================================== PCA ANALYSIS FOOD METABOLITES: AUTO SCALING ==============================##
#PCA food metabolites on log transformed data
logchem_pca_auto= prcomp(log_chem,scale. = T, center = T)
#Here I use the plots generated by factoextra library for a quick check but you can extract the data and repeat graphs using ggplot
#Check percentage of variance explained by each component
fviz_eig(logchem_pca_auto, addlabels = T)
#PCA plot
fviz_pca_ind(logchem_pca_auto, geom = "point",
col.ind = "cos2", # Color by the quality of representation
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE # Avoid text overlapping
)
#Biplot
fviz_pca_biplot(logchem_pca_auto, repel = TRUE, geom = "point",
col.var = "#2E9FDF", # Variables color
col.ind = "#696969",# Individuals color
select.var= list(name=NULL, cos2=NULL, contrib=20) # contrib parameter top X individuals/variables with the highest contribution are drawn
)
# Color by cos2 values: quality on the factor map
fviz_pca_var(logchem_pca_auto, col.var = "cos2",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE # Avoid text overlapping
)
# Contributions of variables to PC1
fviz_contrib(logchem_pca_auto, choice = "var", axes = 1, top = 20)
# Contributions of variables to PC2
fviz_contrib(logchem_pca_auto, choice = "var", axes = 2, top = 20)
#store PCA results in df
pca_res <- summary(logchem_pca_auto)
scree.data <- as.data.frame(pca_res$importance)
score.data <- as.data.frame(pca_res$x)
loadings.data <- as.data.frame(pca_res$rotation)
# Using ggplot to add diet and type of diet as factor in pca plot
chem.pca.var <- get_pca_ind(logchem_pca)
chem.pca.coord <- as.data.frame(chem.pca.var$coord)
chem.pca.coord.diet <- merge(chem_part, chem.pca.coord, by="row.names" )
chem.pca.contrib <- as.data.frame(chem.pca.var$contrib)
chem.pca.contrib.diet <- merge(chem_part, chem.pca.contrib, by="row.names" )
ggplot(chem.pca.contrib.diet, aes(Dim.1,Dim.2, fill=Diet)) +
geom_point(size=3,shape=21) +
theme_bw() +
theme(legend.position = 'bottom',
axis.text.x = element_text(vjust=0.5, size = 10))
ggplot(chem.pca.contrib.diet, aes(Dim.1,Dim.2, fill=type_of_diet)) +
geom_point(size=3,shape=21) +
theme_bw() +
theme(legend.position = 'bottom',
axis.text.x = element_text(vjust=0.5, size = 10))
##=================================== DESCRIPTIVE STATISTICS INTAKE METABOLITE DATA =================================##
#function that creates a new data object containing descriptive statistics
sumstats <- function(z){
Mean <- apply(z, 2, mean)
Median <- apply(z, 2, median)
SD <- apply(z, 2, sd)
SE <- apply(z, 2, function(x) sd(x)/sqrt(length(x)))
CV <- apply(z, 2, function(x) sd(x)/mean(x))
result <- data.frame(Mean, Median, SD, SE, CV)
return(result)
}
#apply descriptive statistics function
stat_IBD <- sumstats(IBD_chem) # IBD patients
stat_IBD$group <- 'IBD'
stat_LLDEEP <- sumstats(LLDEEP_chem) # LLDEEP participants
stat_LLDEEP$group <- 'LLDEEP'
stat_chem <- rbind(stat_IBD, stat_LLDEEP) # full chem data
##===================================== DIFFERENTIAL ABUNDANCE ANALYSIS ON LOG TRANSFORMED AND FILTERED CHEM DATA ====================================================##
# Calculate the percentage of non-zero values for each variable
non_zero_pct <- apply(num_dat != 0, 2, mean)
# Filter variables with at least a non-zero value in 10% of the data
filter_10pct <- num_dat[,non_zero_pct >= 0.1]
# Filter variables with at least a non-zero value in 20% of the data
filter_20pct <- num_dat[,non_zero_pct >= 0.2]
#add pseudocount to all variables
pseudo_chem <- filter_20pct + 1
# Create a new column specifying the group for each sample
pseudo_chem$group <- ifelse(chem_part$UMCGIBDResearchIDorLLDeepID %in% IBD_ID, "IBD", "LLDEEP")
names <- names(pseudo_chem)
#Write remove outliers function
remove_outliers <- function(data, group_var) {
# Split data into two groups based on group_var
groups <- split(data, data[[group_var]])
# Loop through each group and remove outliers in each column
for (i in seq_along(groups)) {
group <- groups[[i]]
for (j in seq_along(group)) {
column <- group[[j]]
if (is.numeric(column)) {
q1 <- quantile(column, 0.25)
q3 <- quantile(column, 0.75)
iqr <- q3 - q1
upper_limit <- q3 + 1.5 * iqr
lower_limit <- q1 - 1.5 * iqr
group[[j]] <- ifelse(column > upper_limit | column < lower_limit, NA, column)
}
}
groups[[i]] <- group
}
# Combine the groups back into a single dataframe
result <- do.call(rbind, groups)
# Remove rows with any NA values
result <- na.omit(result)
return(result)
}
pseudo_chem_clean <- remove_outliers(pseudo_chem, 'group')
##============================= T-TEST ==================================##
ttest_p <- c() # Initialize empty vector for p-values
# Do "for loop" over selected column names
for (i in names) {
result <- t.test(pseudo_chem_clean[, i] ~ group,
data = pseudo_chem_clean)
# Stores p-value to the vector with this column name
ttest_p[[i]] <- result$p.value
}
#store metabolites with raw p-value in new dataframe
ttest_p <- data.frame(metabolites = names(ttest_p),
p_raw = unlist(ttest_p))
ttest_p$p_adjusted <- p.adjust(ttest_p$p_raw, method = "fdr") #add column with p_adj for multiple testing
# prepare a dataframe to plot p values
df <- data.frame(x = c(ttest_p$p_raw, ttest_p$p_adjusted),
type=rep(c("raw", "fdr"),
c(length(ttest_p$p_raw),
length(ttest_p$p_adjusted))))
# make a histrogram of p values and adjusted p values
ttest_plot <- ggplot(df) +
geom_histogram(aes(x=x, fill=type)) +
labs(x = "p-value", y = "Frequency")
ttest_plot
# Sorts p-values in decreasing order. Takes 3 first ones. Takes those rows that match
# with p-values. Takes metabolites.
highest3 <- ttest_p[ttest_p$p_adjusted %in% sort(ttest_p$p_adjusted, decreasing = TRUE)[1:3], ]$metabolites
# From log transformed table, takes only those metabolites that had highest p-values
highest3_chem <- pseudo_chem_clean[,colnames(pseudo_chem_clean) %in% highest3]
# Adds colData that includes patient status infomation
highest3_full <- cbind(pseudo_chem_clean$group, highest3_chem)
# Sorts p-values in increasing order. Takes 3rd first ones. Takes those rows that match
# with p-values. Takes metabolites.
lowest3 <- ttest_p[ttest_p$p_adjusted %in% sort(ttest_p$p_adjusted, decreasing = FALSE)[1:3], ]$metabolites
# From log transformed table, takes only those metabolites that had highest p-values
lowest3_chem <- pseudo_chem_clean[,colnames(pseudo_chem_clean) %in% lowest3]
# Adds colData that includes patient status infomation
lowest3_full <- cbind(pseudo_chem_clean$group, lowest3_chem)
# Puts plots in the same picture
gridExtra::grid.arrange(
# Plot 1
ggplot(highest3_full, aes(x = pseudo_chem_clean$group, y = highest3_full[,2], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(highest3_full)[2]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 2
ggplot(highest3_full, aes(x = pseudo_chem_clean$group, y = highest3_full[,3], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(highest3_full)[3]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 3
ggplot(highest3_full, aes(x = pseudo_chem_clean$group, y = highest3_full[,4], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
ylab("Metabolite intake") + # y axis title
ggtitle(names(highest3_full)[4]) + # main title
theme_minimal() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 4
ggplot(lowest3_full, aes(x = pseudo_chem_clean$group, y = lowest3_full[,2], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(lowest3_full)[2]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 5
ggplot(lowest3_full, aes(x = pseudo_chem_clean$group, y = lowest3_full[,3], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(lowest3_full)[3]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 6
ggplot(lowest3_full, aes(x = pseudo_chem_clean$group, y = lowest3_full[,4], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(lowest3_full)[4]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# 3 columns and 2 rows
ncol = 3,
nrow = 2
)
##======================= WILCOXON TEST ======================##
wilcoxon_p <- c() # Initialize empty vector for p-values
# Do "for loop" over selected column names
for (i in names) {
result <- wilcox.test(pseudo_chem_clean[, i] ~ group,
data = pseudo_chem_clean)
# Stores p-value to the vector with this column name
wilcoxon_p[[i]] <- result$p.value
}
#store metabolites with raw p-value in new dataframe
wilcoxon_p <- data.frame(metabolites = names(wilcoxon_p),
p_raw = unlist(wilcoxon_p))
wilcoxon_p$p_adjusted <- p.adjust(wilcoxon_p$p_raw, method = "fdr") #add column with p_adj for multiple testing
# prepare a dataframe to plot p values
df <- data.frame(x = c(wilcoxon_p$p_raw, wilcoxon_p$p_adjusted),
type=rep(c("raw", "fdr"),
c(length(wilcoxon_p$p_raw),
length(wilcoxon_p$p_adjusted))))
# make a histrogram of p values and adjusted p values
wilcoxon_plot <- ggplot(df) +
geom_histogram(aes(x=x, fill=type)) +
labs(x = "p-value", y = "Frequency")
wilcoxon_plot
# Sorts p-values in decreasing order. Takes 3 first ones. Takes those rows that match
# with p-values. Takes metabolites.
highest3 <- wilcoxon_p[wilcoxon_p$p_adjusted %in% sort(wilcoxon_p$p_adjusted, decreasing = TRUE)[1:3], ]$metabolites
# From pseudo transformed table, takes only those metabolites that had highest p-values
highest3_chem <- pseudo_chem_clean[,colnames(pseudo_chem_clean) %in% highest3]
# Adds colData that includes patient status infomation
highest3_full <- cbind(pseudo_chem_clean$group, highest3_chem)
# Sorts p-values in increasing order. Takes 3rd first ones. Takes those rows that match
# with p-values. Takes metabolites.
lowest3 <- wilcoxon_p[wilcoxon_p$p_adjusted %in% sort(wilcoxon_p$p_adjusted, decreasing = FALSE)[1:3], ]$metabolites
# From pseudo transformed table, takes only those metabolites that had highest p-values
lowest3_chem <- pseudo_chem_clean[,colnames(pseudo_chem_clean) %in% lowest3]
# Adds colData that includes patient status infomation
lowest3_full <- cbind(pseudo_chem_clean$group, lowest3_chem)
# Puts plots in the same picture
gridExtra::grid.arrange(
# Plot 1
ggplot(highest3_full, aes(x = pseudo_chem_clean$group, y = highest3_full[,2], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(highest3_full)[2]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 2
ggplot(highest3_full, aes(x = pseudo_chem_clean$group, y = highest3_full[,3], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(highest3_full)[3]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 3
ggplot(highest3_full, aes(x = pseudo_chem_clean$group, y = highest3_full[,4], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
ylab("Metabolite intake") + # y axis title
ggtitle(names(highest3_full)[4]) + # main title
theme_minimal() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 4
ggplot(lowest3_full, aes(x = pseudo_chem_clean$group, y = lowest3_full[,2], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(lowest3_full)[2]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 5
ggplot(lowest3_full, aes(x = pseudo_chem_clean$group, y = lowest3_full[,3], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(lowest3_full)[3]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# Plot 6
ggplot(lowest3_full, aes(x = pseudo_chem_clean$group, y = lowest3_full[,4], fill = pseudo_chem_clean$group)) +
geom_boxplot() +
geom_signif(comparisons = list(c("IBD", "LLDEEP")),
map_signif_level=TRUE) +
ylab("Metabolite intake") + # y axis title
ggtitle(names(lowest3_full)[4]) + # main title
theme_minimal() +
theme(title = element_text(size = 7),
legend.position = 'none',
axis.text = element_text(size = 7),
axis.title.x=element_blank()), # makes titles smaller, removes x axis title
# 3 columns and 2 rows
ncol = 3,
nrow = 2
)
##============================== VOLCANO PLOT OF DIFFERENTIAL ABUNDANCE ANALYSIS ===============================##
#log2 transformation
pseudo_chem_clean_log2 <- log2(pseudo_chem_clean[,1:1009])
pseudo_chem_clean_log2$group <- ifelse(rownames(pseudo_chem_clean_log2) %like% 'IBD', "IBD", "LLDEEP")
#calculate the mean of each metabolite in IBD group
pseudo_chem_clean_ibd <- filter(pseudo_chem_clean_log2, pseudo_chem_clean_log2$group == 'IBD')
IBD = apply(pseudo_chem_clean_ibd[,1:1009], 2, mean)
#calcuate the mean of each metabolite in LLDEEP group
pseudo_chem_clean_lldeep <- filter(pseudo_chem_clean_log2, pseudo_chem_clean_log2$group == 'LLDEEP')
LLDEEP = apply(pseudo_chem_clean_lldeep[,1:1009], 2, mean)
#because the data is already log2 transformed, take the difference between the means.
foldchange <- LLDEEP - IBD
hist(foldchange, xlab = "log2 Fold Change (IBD vs LLDEEP)")
#add foldchange to df containing p-values
wilcoxon_p$foldchange <- foldchange
# add a column of NAs
wilcoxon_p$intakedifference <- "NO"
# if log2Foldchange > 0.6 and pvalue < 0.05, set as "UP"
wilcoxon_p$intakedifference[wilcoxon_p$foldchange > 0.6 & wilcoxon_p$p_raw < 0.05] <- "UP"
# if log2Foldchange < -0.6 and pvalue < 0.05, set as "DOWN"
wilcoxon_p$intakedifference[wilcoxon_p$foldchange < -0.6 & wilcoxon_p$p_raw < 0.05] <- "DOWN"
# Create a new column "label" to df, that will contain the name of metabolites where intake is different between groups (NA in case they are not)
wilcoxon_p$label <- NA
wilcoxon_p$label[wilcoxon_p$intakedifference != "NO"] <- wilcoxon_p$metabolites[wilcoxon_p$intakedifference != "NO"]
ggplot(wilcoxon_p, aes(x=foldchange, y=-1*log10(p_raw), col=intakedifference, label=label)) +
geom_point() +
theme_minimal() +
geom_vline(xintercept=c(-0.6, 0.6), col="red") +
geom_hline(yintercept=-log10(0.05), col="red") +
geom_text_repel(size = 1.5)