forked from 91097luke/phileo-bench
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexperiment_plots.py
160 lines (133 loc) · 8.16 KB
/
experiment_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from matplotlib import pyplot as plt
import matplotlib
# import PyQt5
# matplotlib.use('QtAgg')
import glob
import json
import os
import argparse
model_labels = {'CoreUnet': {'name':'UNET_fully_sup', 'colour':'green'},
'Resnet50': {'name':'RESNET_fully_sup', 'colour':'red'},
'ViTCNN_building': {'name':'VITCNN_fully_sup', 'colour':'blue'},
'ViTCNN_lc': {'name':'VITCNN_fully_sup', 'colour':'blue'},
'ViTCNN_roads': {'name':'VITCNN_fully_sup', 'colour':'blue'},
'CoreEncoderGeoPretrained_mh_pred_unfrozen': {'name':'GeoAware_UNET_ft', 'colour':'darkolivegreen'},
'CoreEncoderGeoPretrained_mh_pred_frozen': {'name':'GeoAware_UNET_lp', 'colour':'limegreen'},
'ViTCNN_unfrozen': {'name':'Pretrained_VITCNN_ft', 'colour':'lightblue'},
'ViTCNN_frozen': {'name':'Pretrained_VITCNN_lp', 'colour':'deepskyblue'},
'ViTCNN_gc_unfrozen': {'name':'Pretrained_VITCNN_GC_ft', 'colour':'aquamarine'},
'ViTCNN_gc_wSkip_unfrozen': {'name':'Pretrained_VITCNN_GC_wSkip_ft', 'colour':'royalblue'},
'ViTCNN_gc_frozen': {'name':'Pretrained_VITCNN_GC_lp', 'colour':'lightseagreen'},
'SatMAE_unfrozen': {'name': 'SatMAE_ft', 'colour':'steelblue'},
'SatMAE_frozen': {'name':'SatMAE_lp', 'colour':'lightslategrey'},
'Prithvi_unfrozen': {'name':'Prithvi_ft', 'colour':'darkorchid'},
'Prithvi_frozen': {'name':'Prithvi_lp', 'colour':'violet'},
'Seco_unfrozen': {'name':'Seco_ft', 'colour':'sienna'},
'Seco_frozen': {'name':'Seco_lp', 'colour':'lightsalmon'},
}
model_labels_cl = { 'CoreEncoder_building_classification': {'name':'Encoder_benchmark', 'colour':'green'},
'CoreEncoder_lc_classification': {'name':'Encoder_benchmark', 'colour':'green'},
'CoreEncoder_roads_classification': {'name':'Encoder_benchmark', 'colour':'green'},
'CoreEncoderGeoPretrained_Classifier_mh_pred_unfrozen': {'name':'GeoAware_UNET_ft', 'colour':'darkolivegreen'},
'CoreEncoderGeoPretrained_Classifier_mh_pred_frozen': {'name':'GeoAware_UNET_lp', 'colour':'limegreen'},
'ViTCNN_building_classification': {'name':'VITCNN_benchmark', 'colour':'blue'},
'ViTCNN_lc_classification': {'name':'VITCNN_benchmark', 'colour':'blue'},
'ViTCNN_roads_classification': {'name':'VITCNN_benchmark', 'colour':'blue'},
'ViTCNN_Classifier_unfrozen': {'name':'Pretrained_VITCNN_ft', 'colour':'lightblue'},
'ViTCNN_Classifier_frozen': {'name':'Pretrained_VITCNN_lp', 'colour':'deepskyblue'},
'ViTCNN_gc_Classifier_unfrozen': {'name':'Pretrained_VITCNN_GC_ft', 'colour':'aquamarine'},
'ViTCNN_gc_Classifier_frozen': {'name':'Pretrained_VITCNN_GC_lp', 'colour':'lightseagreen'},
'SatMAE_Classifier_unfrozen': {'name': 'SatMAE_ft', 'colour':'steelblue'},
'SatMAE_Classifier_frozen': {'name':'SatMAE_lp', 'colour':'lightslategrey'},
'PrithviClassifier_unfrozen': {'name':'Prithvi_ft', 'colour':'darkorchid'},
'PrithviClassifier_frozen': {'name':'Prithvi_lp', 'colour':'violet'},
'Resnet50': {'name':'RESNET_benchmark', 'colour':'red'},
'Seco_Classifier_unfrozen': {'name':'Seco_ft', 'colour':'sienna'},
'Seco_Classifier_frozen': {'name':'Seco_lp', 'colour':'lightsalmon'}}
def get_args():
parser = argparse.ArgumentParser(description='Plot experiments test loss')
parser.add_argument('--folder', type=str, required=True,
help='Experiment folder name')
parser.add_argument('--plot_title', type=str, required=True,)
parser.add_argument('--y_logscale', type=bool, required=False, default=True)
parser.add_argument('--x_logscale', type=bool, required=False, default=False)
parser.add_argument('--metric', type=str, required=False, default='acc')
parser.add_argument('--filter_on', type=str, nargs='*', required=False, default=['CoreUnet','Pretrained_frozen','Pretrained_unfrozen', 'Pretrained_contrastive_frozen'])
parser.add_argument('--downstream_task', type=str, required=False, default=None)
return parser
def main(folder, plot_title, metric, filter_on, downstream_task, y_logscale=False, x_logscale=False, legend=True): # plot_title, y_logscale, x_logscale
fig = plt.figure(figsize=(8,5))
ax = fig.add_subplot(111)
mode = filter_on
task = f"_{downstream_task}"
metric = metric #'mse' or 'acc'
n_shots = [50, 100, 500, 1000, 5000]
for m in mode:
files = []
for n_shot in n_shots:
files.extend(glob.glob(f"{folder}/*{m}*_{n_shot}/*.json"))
y = []
x = []
if downstream_task.split('_')[-1] == 'classification':
label = model_labels_cl[m]['name']
c = model_labels_cl[m]['colour']
else:
label = model_labels[m]['name']
c = model_labels[m]['colour']
for file in files:
if task in file:
f = open(file)
data = json.load(f)
x.append(data['training_parameters']['n_shot'])
if metric == 'best_epoch':
best_val_loss = min(data['plot_info']['val_losses'])
_val_loss = best_val_loss + (best_val_loss*0.02)
epoch, val_loss = min(enumerate(data['plot_info']['val_losses']), key=lambda x: abs(x[1] - _val_loss))
y.append(epoch)
else:
y.append(data['test_metrics'][metric])
ax.plot(x, y, label=label, color=c, alpha=0.6, linestyle='--', marker='o')
# plt.legend()
ax.set_title(plot_title)
if y_logscale:
ax.set_yscale("log")
if x_logscale:
ax.set_xscale("log")
plt.grid('on')
if metric == 'best_epoch':
ax.set_ylabel('best epoch')
else:
ax.set_ylabel(metric)
ax.set_xlabel('n training samples per region')
if legend:
handles, labels = ax.get_legend_handles_labels()
lgd = ax.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5,-0.15), ncol=4,)
# plt.legend(loc='lower right', bbox_to_anchor=(1.2, 0))
plt.savefig(os.path.join(folder, f"test_{metric}{task}.png"), bbox_extra_artists=(lgd, ), bbox_inches='tight')
else:
plt.savefig(os.path.join(folder, f"test_{metric}{task}.png"))
plt.close('all')
if __name__ == '__main__':
# parser = get_args()
# args = parser.parse_args()
# main(**vars(args))
task = 'lc_classification'
filter_on_seg = ['CoreUnet', 'CoreEncoderGeoPretrained_mh_pred_unfrozen', 'CoreEncoderGeoPretrained_mh_pred_frozen',
'Resnet50', 'Seco_unfrozen', 'Seco_frozen',
f'ViTCNN_{task}', 'ViTCNN_unfrozen', 'ViTCNN_frozen', 'ViTCNN_gc_unfrozen', 'ViTCNN_gc_frozen', 'ViTCNN_gc_wSkip_unfrozen',
'SatMAE_unfrozen', 'SatMAE_frozen',
'Prithvi_unfrozen', 'Prithvi_frozen']
filter_on_cl = [f'CoreEncoder_{task}', 'CoreEncoderGeoPretrained_Classifier_mh_pred_unfrozen',
'CoreEncoderGeoPretrained_Classifier_mh_pred_frozen',
'Resnet50', 'Seco_Classifier_unfrozen', 'Seco_Classifier_frozen',
f'ViTCNN_{task}', 'ViTCNN_Classifier_unfrozen', 'ViTCNN_Classifier_frozen',
'ViTCNN_gc_Classifier_unfrozen', 'ViTCNN_gc_Classifier_frozen',
'SatMAE_Classifier_unfrozen', 'SatMAE_Classifier_frozen',
'PrithviClassifier_unfrozen', 'PrithviClassifier_frozen']
if task.split('_')[-1] == 'classification':
filter_on = filter_on_cl
else:
filter_on = filter_on_seg
main(folder=f'/home/phimultigpu/phileo_NFS/phileo_data/experiments/nshot_experiments_eo-hpc/{task}/', plot_title=f'nshot experiment on {task} downstream task',
filter_on=filter_on,
downstream_task=task, metric='acc', y_logscale=True, x_logscale=True, legend=True)