forked from mir-group/nequip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimal_eng.yaml
66 lines (58 loc) · 2.57 KB
/
minimal_eng.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# !! PLEASE NOTE: `minimal_eng.yaml` is meant as a _minimal_ example of a tiny, fast
# training that can be used to verify your nequip install,
# the syntax of your configuration edits, etc.
# These are NOT recommended hyperparameters for real applications!
# Please see `example.yaml` for a reasonable starting point.
# general
root: results/aspirin
run_name: minimal_eng
seed: 123
dataset_seed: 456
# network
# The default is to build a model with forces, so we need to specify
# `model_builders` to get one without forces. This list is the default,
# except without the `ForceOutput` builder that makes a force+energy
# model out of an energy model:
model_builders:
- SimpleIrrepsConfig # make configuration easier
- EnergyModel # the core nequip model
- PerSpeciesRescale # per-species/per-atom shift & scaling
- RescaleEnergyEtc # global scaling
# options for the model:
num_basis: 8
r_max: 4.0
l_max: 2
parity: true
num_features: 16
# data set
# the keys used need to be stated at least once in key_mapping, npz_fixed_field_keys or npz_keys
# key_mapping is used to map the key in the npz file to the NequIP default values (see data/_key.py)
# all arrays are expected to have the shape of (nframe, natom, ?) except the fixed fields
# note that if your data set uses pbc, you need to also pass an array that maps to the nequip "pbc" key
dataset: npz # type of data set, can be npz or ase
dataset_url: http://quantum-machine.org/gdml/data/npz/aspirin_ccsd.zip # url to download the npz. optional
dataset_file_name: ./benchmark_data/aspirin_ccsd-train.npz # path to data set file
key_mapping:
z: atomic_numbers # atomic species, integers
E: total_energy # total potential eneriges to train to
F: forces # atomic forces to train to
R: pos # raw atomic positions
npz_fixed_field_keys: # fields that are repeated across different examples
- atomic_numbers
chemical_symbols:
- H
- O
- C
# logging
wandb: false
wandb_project: aspirin
# verbose: debug
# training
n_train: 5
n_val: 5
batch_size: 1
max_epochs: 10
# loss function
loss_coeffs: total_energy
# optimizer
optimizer_name: Adam