forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
161 lines (136 loc) · 5.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import logging
import os
import torch
from torch import distributed
from torch.utils.tensorboard import SummaryWriter
from backbones import get_model
from dataset import get_dataloader
from torch.utils.data import DataLoader
from lr_scheduler import PolyScheduler
from losses import CosFace, ArcFace
from partial_fc import PartialFC
from utils.utils_callbacks import CallBackLogging, CallBackVerification
from utils.utils_config import get_config
from utils.utils_logging import AverageMeter, init_logging
try:
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])
distributed.init_process_group("nccl")
except KeyError:
world_size = 1
rank = 0
distributed.init_process_group(
backend="nccl",
init_method="tcp://127.0.0.1:12584",
rank=rank,
world_size=world_size,
)
def main(args):
torch.cuda.set_device(args.local_rank)
cfg = get_config(args.config)
os.makedirs(cfg.output, exist_ok=True)
init_logging(rank, cfg.output)
summary_writer = (
SummaryWriter(log_dir=os.path.join(cfg.output, "tensorboard"))
if rank == 0
else None
)
train_loader = get_dataloader(
cfg.rec, local_rank=args.local_rank, batch_size=cfg.batch_size, dali=cfg.dali)
backbone = get_model(
cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size
).cuda()
backbone = torch.nn.parallel.DistributedDataParallel(
module=backbone, broadcast_buffers=False, device_ids=[args.local_rank])
backbone.train()
if cfg.loss == "arcface":
margin_loss = ArcFace()
elif cfg.loss == "cosface":
margin_loss = CosFace()
else:
raise
module_partial_fc = PartialFC(
margin_loss,
cfg.embedding_size,
cfg.num_classes,
cfg.sample_rate,
cfg.fp16
)
module_partial_fc.train().cuda()
# TODO the params of partial fc must be last in the params list
opt = torch.optim.SGD(
params=[
{"params": backbone.parameters(), },
{"params": module_partial_fc.parameters(), },
],
lr=cfg.lr,
momentum=0.9,
weight_decay=cfg.weight_decay
)
total_batch_size = cfg.batch_size * world_size
cfg.warmup_step = cfg.num_image // total_batch_size * cfg.warmup_epoch
cfg.total_step = cfg.num_image // total_batch_size * cfg.num_epoch
lr_scheduler = PolyScheduler(
optimizer=opt,
base_lr=cfg.lr,
max_steps=cfg.total_step,
warmup_steps=cfg.warmup_step
)
for key, value in cfg.items():
num_space = 25 - len(key)
logging.info(": " + key + " " * num_space + str(value))
callback_verification = CallBackVerification(
val_targets=cfg.val_targets, rec_prefix=cfg.rec, summary_writer=summary_writer
)
callback_logging = CallBackLogging(
frequent=cfg.frequent,
total_step=cfg.total_step,
batch_size=cfg.batch_size,
writer=summary_writer
)
loss_am = AverageMeter()
start_epoch = 0
global_step = 0
amp = torch.cuda.amp.grad_scaler.GradScaler(growth_interval=100)
for epoch in range(start_epoch, cfg.num_epoch):
if isinstance(train_loader, DataLoader):
train_loader.sampler.set_epoch(epoch)
for _, (img, local_labels) in enumerate(train_loader):
global_step += 1
local_embeddings = backbone(img)
loss: torch.Tensor = module_partial_fc(local_embeddings, local_labels, opt)
if cfg.fp16:
amp.scale(loss).backward()
amp.unscale_(opt)
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
amp.step(opt)
amp.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
opt.step()
opt.zero_grad()
lr_scheduler.step()
with torch.no_grad():
loss_am.update(loss.item(), 1)
callback_logging(global_step, loss_am, epoch, cfg.fp16, lr_scheduler.get_last_lr()[0], amp)
if global_step % cfg.verbose == 0 and global_step > 200:
callback_verification(global_step, backbone)
path_pfc = os.path.join(cfg.output, "softmax_fc_gpu_{}.pt".format(rank))
torch.save(module_partial_fc.state_dict(), path_pfc)
if rank == 0:
path_module = os.path.join(cfg.output, "model.pt")
torch.save(backbone.module.state_dict(), path_module)
if cfg.dali:
train_loader.reset()
if rank == 0:
path_module = os.path.join(cfg.output, "model.pt")
torch.save(backbone.module.state_dict(), path_module)
distributed.destroy_process_group()
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description="Distributed Arcface Training in Pytorch")
parser.add_argument("config", type=str, help="py config file")
parser.add_argument("--local_rank", type=int, default=0, help="local_rank")
main(parser.parse_args())