-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteaching_comm.py
97 lines (67 loc) · 2.64 KB
/
teaching_comm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from pathlib import Path
import numpy as np
from tensorflow import keras
import tensorflow as tf
import tensorflow_datasets as tfds
class KafkaTopics(object):
# as of now, the clients will use the first element of the list
CLIENT_MODEL_TOPIC = 'TopicNum'
FEDERATED_MODEL_TOPIC = 'FederatedModel'
class KafkaConfig(object):
FED_KAFKA_BROKER_URL = "node247-hpc.isti.cnr.it:9092"
FED_KAFKA_BROKER_groupid = "foo"
# FED_READ_TIMEOUT = 1.0
# CLIENT_READ_TIMEOUT = 0.0
def create_teaching_model_structure():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
def compile_teaching_model(model):
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
def evaluate_teaching_model(model, ds_test=None):
if ds_test is None:
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_test = ds_test.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
model.evaluate(ds_test)
# create a model from the weights of multiple models
def model_weight_ensemble(members):
# determine how many layers need to be averaged
n_layers = len(members[0].get_weights())
# create an set of average model weights
avg_model_weights = list()
for layer in range(n_layers):
# collect this layer from each model
layer_weights = np.array([model.get_weights()[layer] for model in members])
# weighted average of weights for this layer
avg_layer_weights = np.average(layer_weights, axis=0)
# store average layer weights
avg_model_weights.append(avg_layer_weights)
# create a new model with the same structure
model = keras.models.clone_model(members[0])
# set the weights in the new
model.set_weights(avg_model_weights)
compile_teaching_model(model)
return model
def write_modelfile(filename, data):
p = Path(filename)
p.write_bytes(data)
def read_modelfile(aggregate_filename):
return Path(aggregate_filename).read_bytes()