-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcognitive_architecture.py
346 lines (299 loc) · 13 KB
/
cognitive_architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import numpy as np
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Set, Tuple
from enum import Enum
import logging
from pathlib import Path
import json
import datetime
from collections import deque
import time
class MemoryType(Enum):
DECLARATIVE = "declarative"
PROCEDURAL = "procedural"
EPISODIC = "episodic"
INTENTIONAL = "intentional"
EMOTIONAL = "emotional"
@dataclass
class Memory:
content: str
memory_type: MemoryType
timestamp: float
associations: Set[str] = field(default_factory=set)
emotional_valence: float = 0.0
importance: float = 0.0
context: Dict = field(default_factory=dict)
@dataclass
class Goal:
description: str
priority: float
deadline: Optional[float]
subgoals: List['Goal'] = field(default_factory=list)
status: str = "pending"
progress: float = 0.0
context: Dict = field(default_factory=dict)
dependencies: List[str] = field(default_factory=list)
class PersonalityTrait:
def __init__(self, name: str, base_value: float):
self.name = name
self.base_value = base_value
self.current_value = base_value
self.history = deque(maxlen=1000)
def update(self, value: float, context: Dict):
self.current_value = 0.7 * self.current_value + 0.3 * value
self.history.append((datetime.datetime.now(), value, context))
class CognitiveArchitecture:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.memories: Dict[str, Memory] = {}
self.goals: List[Goal] = []
self.active_goals: List[Goal] = []
self.personality_traits = {
"curiosity": PersonalityTrait("curiosity", 0.8),
"adaptability": PersonalityTrait("adaptability", 0.9),
"persistence": PersonalityTrait("persistence", 0.7),
"creativity": PersonalityTrait("creativity", 0.8),
"analytical": PersonalityTrait("analytical", 0.85),
"social": PersonalityTrait("social", 0.6)
}
# Initialize memory paths
self.memory_path = Path.home() / '.deep_tree_echo' / 'memories'
self.memory_path.mkdir(parents=True, exist_ok=True)
# Initialize cognitive paths
self.echo_dir = Path.home() / '.deep_tree_echo'
self.cognitive_dir = self.echo_dir / 'cognitive'
self.cognitive_dir.mkdir(parents=True, exist_ok=True)
self.activity_file = self.cognitive_dir / 'activity.json'
self.activities = []
self._load_activities()
# Load existing memories and goals
self._load_state()
def _load_state(self):
"""Load memories and goals from disk"""
try:
memory_file = self.memory_path / 'memories.json'
if memory_file.exists():
with open(memory_file) as f:
data = json.load(f)
for mem_data in data.get('memories', []):
self.memories[mem_data['id']] = Memory(**mem_data)
for goal_data in data.get('goals', []):
self.goals.append(Goal(**goal_data))
except Exception as e:
self.logger.error(f"Error loading state: {str(e)}")
def _load_activities(self):
"""Load existing activities"""
if self.activity_file.exists():
try:
with open(self.activity_file) as f:
self.activities = json.load(f)
except:
self.activities = []
def _save_activities(self):
"""Save activities to file"""
with open(self.activity_file, 'w') as f:
json.dump(self.activities[-1000:], f) # Keep last 1000 activities
def _log_activity(self, description: str, context: Dict = None):
"""Log a cognitive activity"""
try:
activity_file = Path('activity_logs/cognitive/activity.json')
# Read existing activities
current = []
if activity_file.exists():
with open(activity_file) as f:
current = json.load(f)
# Add new activity
activity = {
'time': time.time(),
'description': description,
'context': context or {}
}
current.append(activity)
# Keep last 1000 activities
if len(current) > 1000:
current = current[-1000:]
# Write back
with open(activity_file, 'w') as f:
json.dump(current, f)
except Exception as e:
self.logger.error(f"Error logging activity: {e}")
def save_state(self):
"""Save current state to disk"""
self._log_activity("Saving cognitive state")
try:
data = {
'memories': [self._memory_to_dict(m) for m in self.memories.values()],
'goals': [self._goal_to_dict(g) for g in self.goals]
}
with open(self.memory_path / 'memories.json', 'w') as f:
json.dump(data, f, indent=2)
except Exception as e:
self.logger.error(f"Error saving state: {str(e)}")
def generate_goals(self, context: Dict) -> List[Goal]:
"""Generate new goals based on current state and context"""
self._log_activity(
"Generating new goals",
{'context': context}
)
goals = []
# Factor in personality traits
curiosity = self.personality_traits["curiosity"].current_value
creativity = self.personality_traits["creativity"].current_value
analytical = self.personality_traits["analytical"].current_value
# Learning goals based on curiosity
if curiosity > 0.6:
knowledge_gaps = self._identify_knowledge_gaps()
for gap in knowledge_gaps:
goals.append(Goal(
description=f"Learn about: {gap}",
priority=curiosity * 0.8,
deadline=None,
context={"type": "learning", "area": gap}
))
# System improvement goals based on analytical trait
if analytical > 0.7:
improvement_areas = self._analyze_system_performance()
for area in improvement_areas:
goals.append(Goal(
description=f"Improve system {area}",
priority=analytical * 0.9,
deadline=None,
context={"type": "improvement", "area": area}
))
# Creative exploration goals
if creativity > 0.6:
exploration_ideas = self._generate_creative_ideas()
for idea in exploration_ideas:
goals.append(Goal(
description=f"Explore: {idea}",
priority=creativity * 0.7,
deadline=None,
context={"type": "exploration", "idea": idea}
))
return goals
def update_personality(self, experiences: List[Dict]):
"""Update personality traits based on experiences"""
for exp in experiences:
# Update curiosity based on learning experiences
if exp.get('type') == 'learning':
success = exp.get('success', 0.5)
self.personality_traits["curiosity"].update(
success * 1.2,
{"experience": exp}
)
# Update adaptability based on change handling
elif exp.get('type') == 'adaptation':
effectiveness = exp.get('effectiveness', 0.5)
self.personality_traits["adaptability"].update(
effectiveness,
{"experience": exp}
)
# Update persistence based on challenge handling
elif exp.get('type') == 'challenge':
resolution = exp.get('resolution', 0.5)
self.personality_traits["persistence"].update(
resolution,
{"experience": exp}
)
def learn_from_experience(self, experience: Dict):
"""Learn from new experiences"""
self._log_activity(
"Learning from experience",
{'experience': experience}
)
# Create memory
memory = Memory(
content=experience.get('description', ''),
memory_type=MemoryType(experience.get('type', 'episodic')),
timestamp=datetime.datetime.now().timestamp(),
emotional_valence=experience.get('emotional_impact', 0.0),
importance=experience.get('importance', 0.5),
context=experience
)
# Store memory
self.memories[str(len(self.memories))] = memory
# Update personality based on experience
self.update_personality([experience])
# Generate new goals if needed
if experience.get('importance', 0) > 0.7:
new_goals = self.generate_goals({"trigger": experience})
self.goals.extend(new_goals)
def _identify_knowledge_gaps(self) -> List[str]:
"""Identify areas where knowledge is lacking"""
# Analyze memories and identify areas with low coverage
knowledge_areas = {}
for memory in self.memories.values():
if memory.memory_type == MemoryType.DECLARATIVE:
area = memory.context.get('area', 'general')
knowledge_areas[area] = knowledge_areas.get(area, 0) + 1
# Find areas with low coverage
gaps = []
for area, count in knowledge_areas.items():
if count < 5: # Arbitrary threshold
gaps.append(area)
return gaps
def _analyze_system_performance(self) -> List[str]:
"""Analyze system performance and identify areas for improvement"""
# Example areas to monitor
areas = ['memory_usage', 'response_time', 'learning_rate', 'goal_completion']
improvements = []
# Add areas that need improvement based on metrics
for area in areas:
if self._get_performance_metric(area) < 0.7:
improvements.append(area)
return improvements
def _generate_creative_ideas(self) -> List[str]:
"""Generate new ideas for exploration"""
# Combine existing knowledge in novel ways
ideas = []
memory_pairs = list(zip(
self.memories.values(),
self.memories.values()
))
for mem1, mem2 in memory_pairs[:5]: # Limit to prevent explosion
if mem1.memory_type != mem2.memory_type:
idea = f"Explore connection between {mem1.content} and {mem2.content}"
ideas.append(idea)
return ideas
def _get_performance_metric(self, metric: str) -> float:
"""Get performance metric value"""
# Placeholder for actual metrics
return np.random.random()
def _memory_to_dict(self, memory: Memory) -> Dict:
"""Convert memory to dictionary for storage"""
return {
'content': memory.content,
'memory_type': memory.memory_type.value,
'timestamp': memory.timestamp,
'associations': list(memory.associations),
'emotional_valence': memory.emotional_valence,
'importance': memory.importance,
'context': memory.context
}
def _goal_to_dict(self, goal: Goal) -> Dict:
"""Convert goal to dictionary for storage"""
return {
'description': goal.description,
'priority': goal.priority,
'deadline': goal.deadline,
'status': goal.status,
'progress': goal.progress,
'context': goal.context,
'dependencies': goal.dependencies,
'subgoals': [self._goal_to_dict(g) for g in goal.subgoals]
}
def process_experience(self, experience: str, context: Dict = None) -> None:
"""Process a new experience"""
self._log_activity(f"Processing experience: {experience}", context)
# Rest of the method...
def generate_goal(self, description: str, priority: float = 0.5,
deadline: Optional[float] = None) -> Goal:
"""Generate a new goal"""
self._log_activity(f"Generated goal: {description}",
{'priority': priority, 'deadline': deadline})
# Rest of the method...
def update_goal(self, goal: Goal, progress: float) -> None:
"""Update goal progress"""
self._log_activity(f"Updated goal: {goal.description}",
{'progress': progress, 'status': goal.status})
# Rest of the method...