forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bisect_small.cu
182 lines (155 loc) · 7.45 KB
/
bisect_small.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Computation of eigenvalues of a small symmetric, tridiagonal matrix */
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
// includes, project
#include "helper_functions.h"
#include "helper_cuda.h"
#include "config.h"
#include "structs.h"
#include "matlab.h"
// includes, kernels
#include "bisect_kernel_small.cuh"
// includes, file
#include "bisect_small.cuh"
////////////////////////////////////////////////////////////////////////////////
//! Determine eigenvalues for matrices smaller than MAX_SMALL_MATRIX
//! @param TimingIterations number of iterations for timing
//! @param input handles to input data of kernel
//! @param result handles to result of kernel
//! @param mat_size matrix size
//! @param lg lower limit of Gerschgorin interval
//! @param ug upper limit of Gerschgorin interval
//! @param precision desired precision of eigenvalues
//! @param iterations number of iterations for timing
////////////////////////////////////////////////////////////////////////////////
void computeEigenvaluesSmallMatrix(const InputData &input,
ResultDataSmall &result,
const unsigned int mat_size, const float lg,
const float ug, const float precision,
const unsigned int iterations) {
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
sdkStartTimer(&timer);
for (unsigned int i = 0; i < iterations; ++i) {
dim3 blocks(1, 1, 1);
dim3 threads(MAX_THREADS_BLOCK_SMALL_MATRIX, 1, 1);
bisectKernel<<<blocks, threads>>>(input.g_a, input.g_b, mat_size,
result.g_left, result.g_right,
result.g_left_count, result.g_right_count,
lg, ug, 0, mat_size, precision);
}
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&timer);
getLastCudaError("Kernel launch failed");
printf("Average time: %f ms (%i iterations)\n",
sdkGetTimerValue(&timer) / (float)iterations, iterations);
sdkDeleteTimer(&timer);
}
////////////////////////////////////////////////////////////////////////////////
//! Initialize variables and memory for the result for small matrices
//! @param result handles to the necessary memory
//! @param mat_size matrix_size
////////////////////////////////////////////////////////////////////////////////
void initResultSmallMatrix(ResultDataSmall &result,
const unsigned int mat_size) {
result.mat_size_f = sizeof(float) * mat_size;
result.mat_size_ui = sizeof(unsigned int) * mat_size;
result.eigenvalues = (float *)malloc(result.mat_size_f);
// helper variables
result.zero_f = (float *)malloc(result.mat_size_f);
result.zero_ui = (unsigned int *)malloc(result.mat_size_ui);
for (unsigned int i = 0; i < mat_size; ++i) {
result.zero_f[i] = 0.0f;
result.zero_ui[i] = 0;
result.eigenvalues[i] = 0.0f;
}
checkCudaErrors(cudaMalloc((void **)&result.g_left, result.mat_size_f));
checkCudaErrors(cudaMalloc((void **)&result.g_right, result.mat_size_f));
checkCudaErrors(
cudaMalloc((void **)&result.g_left_count, result.mat_size_ui));
checkCudaErrors(
cudaMalloc((void **)&result.g_right_count, result.mat_size_ui));
// initialize result memory
checkCudaErrors(cudaMemcpy(result.g_left, result.zero_f, result.mat_size_f,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(result.g_right, result.zero_f, result.mat_size_f,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(result.g_right_count, result.zero_ui,
result.mat_size_ui, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(result.g_left_count, result.zero_ui,
result.mat_size_ui, cudaMemcpyHostToDevice));
}
////////////////////////////////////////////////////////////////////////////////
//! Cleanup memory and variables for result for small matrices
//! @param result handle to variables
////////////////////////////////////////////////////////////////////////////////
void cleanupResultSmallMatrix(ResultDataSmall &result) {
freePtr(result.eigenvalues);
freePtr(result.zero_f);
freePtr(result.zero_ui);
checkCudaErrors(cudaFree(result.g_left));
checkCudaErrors(cudaFree(result.g_right));
checkCudaErrors(cudaFree(result.g_left_count));
checkCudaErrors(cudaFree(result.g_right_count));
}
////////////////////////////////////////////////////////////////////////////////
//! Process the result obtained on the device, that is transfer to host and
//! perform basic sanity checking
//! @param input handles to input data
//! @param result handles to result data
//! @param mat_size matrix size
//! @param filename output filename
////////////////////////////////////////////////////////////////////////////////
void processResultSmallMatrix(const InputData &input,
const ResultDataSmall &result,
const unsigned int mat_size,
const char *filename) {
const unsigned int mat_size_f = sizeof(float) * mat_size;
const unsigned int mat_size_ui = sizeof(unsigned int) * mat_size;
// copy data back to host
float *left = (float *)malloc(mat_size_f);
unsigned int *left_count = (unsigned int *)malloc(mat_size_ui);
checkCudaErrors(
cudaMemcpy(left, result.g_left, mat_size_f, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy(left_count, result.g_left_count, mat_size_ui,
cudaMemcpyDeviceToHost));
float *eigenvalues = (float *)malloc(mat_size_f);
for (unsigned int i = 0; i < mat_size; ++i) {
eigenvalues[left_count[i]] = left[i];
}
// save result in matlab format
writeTridiagSymMatlab(filename, input.a, input.b + 1, eigenvalues, mat_size);
freePtr(left);
freePtr(left_count);
freePtr(eigenvalues);
}