The library has been tested using Agda 2.6.2.
-
A golden testing library in
Test.Golden
. This allows you to run a set of tests and make sure their output matches an expectedgolden
value. The test runner has many options: filtering tests by name, dumping the list of failures to a file, timing the runs, coloured output, etc. Cf. the comments inTest.Golden
and the standard library's own tests intests/
for documentation on how to use the library. -
A new tactic
cong!
available fromTactic.Cong
which automatically infers the argument tocong
for you via anti-unification. -
Improved the
solve
tactic inTactic.RingSolver
to work in a much wider range of situations.
-
In
System.Exit
, theExitFailure
constructor is now carrying an integer rather than a natural. The previous binding was incorrectly assuming that all exit codes where non-negative. -
In
/-monoˡ-≤
inData.Nat.DivMod
the parametero
was implicit but not inferrable. It has been changed to be explicit. -
In
+-distrib-/-∣ʳ
inData.Nat.DivMod
the parameterm
was implicit but not inferrable, whilen
is explicit but inferrable. They have been changed. -
In
Function.Definitions
the definitions ofSurjection
,Inverseˡ
,Inverseʳ
were not being re-exported correctly and therefore had an unsolved meta-variable whenever this module was explicitly parameterised. This has been fixed. -
Add module
Algebra.Module
that re-exports the contents ofAlgebra.Module.(Definitions/Structures/Bundles)
-
In
Algebra.Definitions.RawSemiring
the recordprime
addp∤1 : p ∤ 1#
to the field.
- All modules and names that were deprecated in v1.2 and before have been removed.
- Due to the change in Agda 2.6.2 where sized types are no longer compatible
with the
--safe
flag, it has become clear that a third variant of codata will be needed using coinductive records. Therefore all existing modules inCodata
which used sized types have been moved inside a new folder namedSized
, e.g.Codata.Stream
has becomeCodata.Sized.Stream
.
- As observed by Wen Kokke in Issue #1636, it no longer really makes sense
to group the modules which correspond to the variety of concepts of
(effectful) type constructor arising in functional programming (esp. in haskell)
such as
Monad
,Applicative
,Functor
, etc, underCategory.*
, as this obstructs the importing of theagda-categories
development into the Standard Library, and moreover needlessly restricts the applicability of categorical concepts to this (highly specific) mode of use. Correspondingly, modules grouped under*.Categorical.*
which exploited these structures for effectful programming have been renamed*.Effectful
.
-
In
Text.Pretty
,Doc
is now a record rather than a type alias. This helps Agda reconstruct thewidth
parameter when the module is opened without it being applied. In particular this allows users to write width-generic pretty printers and only pick a width when calling the renderer by using this import style:open import Text.Pretty using (Doc; render) -- ^-- no width parameter for Doc & render open module Pretty {w} = Text.Pretty w hiding (Doc; render) -- ^-- implicit width parameter for the combinators pretty : Doc w pretty = ? -- you can use the combinators here and there won't be any -- issues related to the fact that `w` cannot be reconstructed -- anymore main = do -- you can now use the same pretty with different widths: putStrLn $ render 40 pretty putStrLn $ render 80 pretty
-
In
Text.Regex.Search
thesearchND
function finding infix matches has been tweaked to make sure the returned solution is a local maximum in terms of length. It used to be that we would make the match start as late as possible and finish as early as possible. It's now the reverse.So
[a-zA-Z]+.agdai?
run on "the path _build/Main.agdai corresponds to" will return "Main.agdai" when it used to be happy to just return "n.agda".
-
In order to improve modularity and consistency with
Relation.Binary.Lattice
, the structures & bundles forSemilattice
,Lattice
,DistributiveLattice
&BooleanAlgebra
have been moved out of theAlgebra
modules and into their own hierarchy inAlgebra.Lattice
. -
All submodules, (e.g.
Algebra.Properties.Semilattice
orAlgebra.Morphism.Lattice
) have been moved to the corresponding place underAlgebra.Lattice
(e.g.Algebra.Lattice.Properties.Semilattice
orAlgebra.Lattice.Morphism.Lattice
). See theDeprecated modules
section below for full details. -
Changed definition of
IsDistributiveLattice
andIsBooleanAlgebra
so that they are no longer right-biased which hinders compositionality. More concretely,IsDistributiveLattice
now has fields:∨-distrib-∧ : ∨ DistributesOver ∧ ∧-distrib-∨ : ∧ DistributesOver ∨
instead of
∨-distribʳ-∧ : ∨ DistributesOverʳ ∧
and
IsBooleanAlgebra
now has fields:∨-complement : Inverse ⊤ ¬ ∨ ∧-complement : Inverse ⊥ ¬ ∧
instead of:
∨-complementʳ : RightInverse ⊤ ¬ ∨ ∧-complementʳ : RightInverse ⊥ ¬ ∧
-
To allow construction of these structures via their old form, smart constructors have been added to a new module
Algebra.Lattice.Structures.Biased
, which are by re-exported automatically byAlgebra.Lattice
. For example, if before you wrote:∧-∨-isDistributiveLattice = record { isLattice = ∧-∨-isLattice ; ∨-distribʳ-∧ = ∨-distribʳ-∧ }
you can use the smart constructor
isDistributiveLatticeʳʲᵐ
to write:∧-∨-isDistributiveLattice = isDistributiveLatticeʳʲᵐ (record { isLattice = ∧-∨-isLattice ; ∨-distribʳ-∧ = ∨-distribʳ-∧ })
without having to prove full distributivity.
-
Added new
IsBoundedSemilattice
/BoundedSemilattice
records. -
Added new aliases
Is(Meet/Join)(Bounded)Semilattice
forIs(Bounded)Semilattice
which can be used to indicate meet/join-ness of the original structures.
-
The switch to the new function hierarchy is complete and the following definitions now use the new definitions instead of the old ones:
Data.Fin.Properties
∀-cons-⇔
⊎⇔∃
Data.Fin.Subset.Properties
out⊆-⇔
in⊆in-⇔
out⊂in-⇔
out⊂out-⇔
in⊂in-⇔
x∈⁅y⁆⇔x≡y
∩⇔×
∪⇔⊎
∃-Subset-[]-⇔
∃-Subset-∷-⇔
Data.List.Countdown
empty
Data.List.Fresh.Relation.Unary.Any
⊎⇔Any
Data.List.Relation.Binary.Lex
[]<[]-⇔
∷<∷-⇔
Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
∷⁻¹
∷ʳ⁻¹
Sublist-[x]-bijection
Data.List.Relation.Binary.Sublist.Setoid.Properties
∷⁻¹
∷ʳ⁻¹
[x]⊆xs⤖x∈xs
Data.Maybe.Relation.Binary.Connected
just-equivalence
Data.Maybe.Relation.Binary.Pointwise
just-equivalence
Data.Maybe.Relation.Unary.All
just-equivalence
Data.Maybe.Relation.Unary.Any
just-equivalence
Data.Nat.Divisibility
m%n≡0⇔n∣m
Data.Nat.Properties
eq?
Data.Vec.Relation.Binary.Lex.Core
P⇔[]<[]
∷<∷-⇔
Data.Vec.Relation.Binary.Pointwise.Extensional
equivalent
Pointwise-≡↔≡
Data.Vec.Relation.Binary.Pointwise.Inductive
Pointwise-≡↔≡
Relation.Binary.Construct.Closure.Reflexive.Properties
⊎⇔Refl
Relation.Binary.Construct.Closure.Transitive
equivalent
Relation.Nullary.Decidable
map
-
The names of the fields in the records of the new hierarchy have been changed from
f
,g
,cong₁
,cong₂
toto
,from
,to-cong
,from-cong
.
-
Many numeric operations in the library require their arguments to be non-zero, and various proofs require their arguments to be non-zero/positive/negative etc. As discussed on the mailing list, the previous way of constructing and passing round these proofs was extremely clunky and lead to messy and difficult to read code. We have therefore changed every occurrence where we need a proof of non-zeroness/positivity/etc. to take it as an irrelevant instance argument. See the mailing list for a fuller explanation of the motivation and implementation.
-
For example, whereas the type signature of division used to be:
_/_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
it is now:
_/_ : (dividend divisor : ℕ) .{{_ : NonZero divisor}} → ℕ
which means that as long as an instance of
NonZero n
is in scope then you can writem / n
without having to explicitly provide a proof, as instance search will fill it in for you. The full list of such operations changed is as follows:- In
Data.Nat.DivMod
:_/_
,_%_
,_div_
,_mod_
- In
Data.Nat.Pseudorandom.LCG
:Generator
- In
Data.Integer.DivMod
:_divℕ_
,_div_
,_modℕ_
,_mod_
- In
Data.Rational
:mkℚ+
,normalize
,_/_
,1/_
- In
Data.Rational.Unnormalised
:_/_
,1/_
,_÷_
- In
-
At the moment, there are 4 different ways such instance arguments can be provided, listed in order of convenience and clarity:
- Automatic basic instances - the standard library provides instances based on the constructors of each
numeric type in
Data.X.Base
. For example,Data.Nat.Base
constains an instance ofNonZero (suc n)
for anyn
andData.Integer.Base
contains an instance ofNonNegative (+ n)
for anyn
. Consequently, if the argument is of the required form, these instances will always be filled in by instance search automatically, e.g.0/n≡0 : 0 / suc n ≡ 0
- Take the instance as an argument - You can provide the instance argument as a parameter to your function
and Agda's instance search will automatically use it in the correct place without you having to
explicitly pass it, e.g.
0/n≡0 : .{{_ : NonZero n}} → 0 / n ≡ 0
- Define the instance locally - You can define an instance argument in scope (e.g. in a
where
clause) and Agda's instance search will again find it automatically, e.g.instance n≢0 : NonZero n n≢0 = ... 0/n≡0 : 0 / n ≡ 0
- Pass the instance argument explicitly - Finally, if all else fails you can pass the
instance argument explicitly into the function using
{{ }}
, e.g.Suitable constructors for0/n≡0 : ∀ n (n≢0 : NonZero n) → ((0 / n) {{n≢0}}) ≡ 0
NonZero
/Positive
etc. can be found inData.X.Base
.
- Automatic basic instances - the standard library provides instances based on the constructors of each
numeric type in
-
A full list of proofs that have changed to use instance arguments is available at the end of this file. Notable changes to proofs are now discussed below.
-
Previously one of the hacks used in proofs was to explicitly refer to everything in the correct form, e.g. if the argument
n
had to be non-zero then you would refer to the argument assuc n
everywhere instead ofn
, e.g.n/n≡1 : ∀ n → suc n / suc n ≡ 1
This made the proofs extremely difficult to use if your term wasn't in the right form. After being updated to use instance arguments instead, the proof above becomes:
n/n≡1 : ∀ n {{_ : NonZero n}} → n / n ≡ 1
However, note that this means that if you passed in the value
x
to these proofs before, then you will now have to pass insuc x
. The proofs for which the arguments have changed form in this way are highlighted in the list at the bottom of the file. -
Finally, the definition of
_≢0
has been removed fromData.Rational.Unnormalised.Base
and the following proofs about it have been removed fromData.Rational.Unnormalised.Properties
:p≄0⇒∣↥p∣≢0 : ∀ p → p ≠ 0ℚᵘ → ℤ.∣ (↥ p) ∣ ≢0 ∣↥p∣≢0⇒p≄0 : ∀ p → ℤ.∣ (↥ p) ∣ ≢0 → p ≠ 0ℚᵘ
-
The definition of
Prime
inData.Nat.Primality
was:Prime 0 = ⊥ Prime 1 = ⊥ Prime (suc (suc n)) = (i : Fin n) → 2 + toℕ i ∤ 2 + n
which was very hard to reason about as not only did it involve conversion to and from the
Fin
type, it also required that the divisor was of the form2 + toℕ i
, which has exactly the same problem as thesuc n
hack described above used for non-zeroness. -
To make it easier to use, reason about and read, the definition has been changed to:
Prime 0 = ⊥ Prime 1 = ⊥ Prime n = ∀ {d} → 2 ≤ d → d < n → d ∤ n
-
Under the
Reflection
module, there were various impending name clashes between the core AST as exposed by Agda and the annotated AST defined in the library. -
While the content of the modules remain the same, the modules themselves have therefore been renamed as follows:
Reflection.Annotated ↦ Reflection.AnnotatedAST Reflection.Annotated.Free ↦ Reflection.AnnotatedAST.Free Reflection.Abstraction ↦ Reflection.AST.Abstraction Reflection.Argument ↦ Reflection.AST.Argument Reflection.Argument.Information ↦ Reflection.AST.Argument.Information Reflection.Argument.Quantity ↦ Reflection.AST.Argument.Quantity Reflection.Argument.Relevance ↦ Reflection.AST.Argument.Relevance Reflection.Argument.Modality ↦ Reflection.AST.Argument.Modality Reflection.Argument.Visibility ↦ Reflection.AST.Argument.Visibility Reflection.DeBruijn ↦ Reflection.AST.DeBruijn Reflection.Definition ↦ Reflection.AST.Definition Reflection.Instances ↦ Reflection.AST.Instances Reflection.Literal ↦ Reflection.AST.Literal Reflection.Meta ↦ Reflection.AST.Meta Reflection.Name ↦ Reflection.AST.Name Reflection.Pattern ↦ Reflection.AST.Pattern Reflection.Show ↦ Reflection.AST.Show Reflection.Traversal ↦ Reflection.AST.Traversal Reflection.Universe ↦ Reflection.AST.Universe Reflection.TypeChecking.Monad ↦ Reflection.TCM Reflection.TypeChecking.Monad.Categorical ↦ Reflection.TCM.Categorical Reflection.TypeChecking.Monad.Format ↦ Reflection.TCM.Format Reflection.TypeChecking.Monad.Syntax ↦ Reflection.TCM.Instances Reflection.TypeChecking.Monad.Instances ↦ Reflection.TCM.Syntax
-
A new module
Reflection.AST
that re-exports the contents of the submodules has been addeed.
- The previous implementations of
_divℕ_
,_div_
,_modℕ_
,_mod_
inData.Integer.DivMod
internally converted to the unaryFin
datatype resulting in poor performance. The implementation has been updated to use the corresponding operations fromData.Nat.DivMod
which are efficiently implemented using the Haskell backend.
-
The module
Strict
has been deprecated in favour ofFunction.Strict
and the definitions of strict application,_$!_
and_$!′_
, have been moved fromFunction.Base
toFunction.Strict
. -
The contents of
Function.Strict
is now re-exported byFunction
.
- Several ring-like structures now have the multiplicative structure defined by
its laws rather than as a substructure, to avoid repeated proofs that the
underlying relation is an equivalence. These are:
IsNearSemiring
IsSemiringWithoutOne
IsSemiringWithoutAnnihilatingZero
IsRing
- To aid with migration, structures matching the old style ones have been added
to
Algebra.Structures.Biased
, with conversionFunctions:IsNearSemiring*
andisNearSemiring*
IsSemiringWithoutOne*
andisSemiringWithoutOne*
IsSemiringWithoutAnnihilatingZero*
andisSemiringWithoutAnnihilatingZero*
IsRing*
andisRing*
-
The definition of ⊥ has been changed to
private data Empty : Set where ⊥ : Set ⊥ = Irrelevant Empty
in order to make ⊥ proof irrelevant. Any two proofs of
⊥
or of a negated statements are now judgementally equal to each other. -
Consequently we have modified the following definitions:
- In
Relation.Nullary.Decidable.Core
, the type ofdec-no
has changeddec-no : (p? : Dec P) → ¬ P → ∃ λ ¬p′ → p? ≡ no ¬p′ ↦ dec-no : (p? : Dec P) (¬p : ¬ P) → p? ≡ no ¬p
- In
Relation.Binary.PropositionalEquality
, the type of≢-≟-identity
has changed≢-≟-identity : x ≢ y → ∃ λ ¬eq → x ≟ y ≡ no ¬eq ↦ ≢-≟-identity : (x≢y : x ≢ y) → x ≟ y ≡ no x≢y
- In
-
The first two arguments of
m≡n⇒m-n≡0
(nowi≡j⇒i-j≡0
) inData.Integer.Base
have been made implicit. -
The relations
_≤_
_≥_
_<_
_>_
inData.Fin.Base
have been generalised so they can now relateFin
terms with different indices. Should be mostly backwards compatible, but very occasionally when proving properties about the orderings themselves the second index must be provided explicitly. -
The operation
SymClosure
on relations inRelation.Binary.Construct.Closure.Symmetric
has been reimplemented as a data typeSymClosure _⟶_ a b
that is parameterized by the input relation_⟶_
(as well as the elementsa
andb
of the domain) so that_⟶_
can be inferred, which it could not from the previous implementation using the sum typea ⟶ b ⊎ b ⟶ a
. -
In
Algebra.Morphism.Structures
,IsNearSemiringHomomorphism
,IsSemiringHomomorphism
, andIsRingHomomorphism
have been redeisgned to build up fromIsMonoidHomomorphism
,IsNearSemiringHomomorphism
, andIsSemiringHomomorphism
respectively, adding a single property at each step. This means that they no longer need to have two separate proofs ofIsRelHomomorphism
. Similarly,IsLatticeHomomorphism
is now built asIsRelHomomorphism
along with proofs that_∧_
and_∨_
are homorphic.Also,
⁻¹-homo
inIsRingHomomorphism
has been renamed to-‿homo
. -
Moved definition of
_>>=_
underData.Vec.Base
to its submoduleCartesianBind
in order to keep another new definition of_>>=_
, located inDiagonalBind
which is also a submodule ofData.Vec.Base
. -
The functions
split
,flatten
andflatten-split
have been removed fromData.List.NonEmpty
. In their placegroupSeqs
andungroupSeqs
have been added toData.List.NonEmpty.Base
which morally perform the same operations but without computing the accompanying proofs. The proofs can be found inData.List.NonEmpty.Properties
under the namesgroupSeqs-groups
andungroupSeqs
andgroupSeqs
. -
The constructors
+0
and+[1+_]
fromData.Integer.Base
are no longer exported byData.Rational.Base
. You will have to openData.Integer(.Base)
directly to use them. -
The types of the proofs
pos⇒1/pos
/1/pos⇒pos
andneg⇒1/neg
/1/neg⇒neg
inData.Rational(.Unnormalised).Properties
have been switched, as the previous naming scheme didn't correctly generalise to e.g.pos+pos⇒pos
. For example the types ofpos⇒1/pos
/1/pos⇒pos
were:pos⇒1/pos : ∀ p .{{_ : NonZero p}} .{{Positive (1/ p)}} → Positive p 1/pos⇒pos : ∀ p .{{_ : Positive p}} → Positive (1/ p)
but are now:
pos⇒1/pos : ∀ p .{{_ : Positive p}} → Positive (1/ p) 1/pos⇒pos : ∀ p .{{_ : NonZero p}} .{{Positive (1/ p)}} → Positive p
-
Opₗ
andOpᵣ
have moved fromAlgebra.Core
toAlgebra.Module.Core
. -
In
Data.Nat.GeneralisedArithmetic
, thes
andz
arguments to the following functions have been made explicit:fold-+
fold-k
fold-*
fold-pull
-
In
Data.Fin.Properties
:- the
i
argument toopposite-suc
has been made explicit; pigeonhole
has been strengthened: wlog, we return a proof thati < j
rather than a merei ≢ j
.
- the
-
In
Codata.Guarded.Stream
the following functions have been modified to have simpler definitions:cycle
interleave⁺
cantor
Furthermore, the direction of interleaving ofcantor
has changed. Precisely, supposepair
is the cantor pairing function, thenlookup (pair i j) (cantor xss)
according to the old definition corresponds tolookup (pair j i) (cantor xss)
according to the new definition. For a concrete example see the one included at the end of the module.
- The ring solver tactic has been greatly improved. In particular:
- When the solver is used for concrete ring types, e.g. ℤ, the equality can now use
all the ring operations defined natively for that type, rather than having
to use the operations defined in
AlmostCommutativeRing
. For example previously you could not useData.Integer.Base._*_
but instead had to useAlmostCommutativeRing._*_
. - The solver now supports use of the subtraction operator
_-_
whenever it is defined immediately in terms of_+_
and-_
. This is the case forData.Integer
andData.Rational
.
- When the solver is used for concrete ring types, e.g. ℤ, the equality can now use
all the ring operations defined natively for that type, rather than having
to use the operations defined in
-
Previously the division and modulus operators were defined in
Data.Nat.DivMod
which in turn meant that using them required importingData.Nat.Properties
which is a very heavy dependency. -
To fix this, these operators have been moved to
Data.Nat.Base
. The properties for them still live inData.Nat.DivMod
(which also publicly re-exports them to provide backwards compatability). -
Beneficieries of this change include
Data.Rational.Unnormalised.Base
whose dependencies are now significantly smaller.
- The module
Function.Related
has been deprecated in favour ofFunction.Related.Propositional
whose code uses the new function hierarchy. This also opens up the possibility of a more generalFunction.Related.Setoid
at a later date. Several of the names have been changed in this process to bring them into line with the camelcase naming convention used in the rest of the library:reverse-implication ↦ reverseImplication reverse-injection ↦ reverseInjection left-inverse ↦ leftInverse Symmetric-kind ↦ SymmetricKind Forward-kind ↦ ForwardKind Backward-kind ↦ BackwardKind Equivalence-kind ↦ EquivalenceKind
- As discussed above the following files have been moved:
Algebra.Properties.Semilattice ↦ Algebra.Lattice.Properties.Semilattice Algebra.Properties.Lattice ↦ Algebra.Lattice.Properties.Lattice Algebra.Properties.DistributiveLattice ↦ Algebra.Lattice.Properties.DistributiveLattice Algebra.Properties.BooleanAlgebra ↦ Algebra.Lattice.Properties.BooleanAlgebra Algebra.Properties.BooleanAlgebra.Expression ↦ Algebra.Lattice.Properties.BooleanAlgebra.Expression Algebra.Morphism.LatticeMonomorphism ↦ Algebra.Lattice.Morphism.LatticeMonomorphism
- The following files have been moved:
Relation.Binary.Properties.BoundedJoinSemilattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedJoinSemilattice.agda Relation.Binary.Properties.BoundedLattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedLattice.agda Relation.Binary.Properties.BoundedMeetSemilattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedMeetSemilattice.agda Relation.Binary.Properties.DistributiveLattice.agda ↦ Relation.Binary.Lattice.Properties.DistributiveLattice.agda Relation.Binary.Properties.JoinSemilattice.agda ↦ Relation.Binary.Lattice.Properties.JoinSemilattice.agda Relation.Binary.Properties.Lattice.agda ↦ Relation.Binary.Lattice.Properties.Lattice.agda Relation.Binary.Properties.MeetSemilattice.agda ↦ Relation.Binary.Lattice.Properties.MeetSemilattice.agda
- The module
Data.Nat.Properties.Core
has been deprecated, and its one entry moved toData.Nat.Properties
-
In
Data.Fin.Base
: two new, hopefully more memorable, names↑ˡ
↑ʳ
for the 'left', resp. 'right' injection of a Fin m into a 'larger' type,Fin (m + n)
, resp.Fin (n + m)
, with argument order to reflect the position of theFin m
argument.inject+ ↦ flip _↑ˡ_ raise ↦ _↑ʳ_
-
In
Data.Fin.Properties
:toℕ-raise ↦ toℕ-↑ʳ toℕ-inject+ ↦ toℕ-↑ˡ splitAt-inject+ ↦ splitAt-↑ˡ m i n splitAt-raise ↦ splitAt-↑ʳ Fin0↔⊥ ↦ 0↔⊥ eq? ↦ inj⇒≟
-
In
Data.Fin.Permutation.Components
:reverse ↦ Data.Fin.Base.opposite reverse-prop ↦ Data.Fin.Properties.opposite-prop reverse-involutive ↦ Data.Fin.Properties.opposite-involutive reverse-suc ↦ Data.Fin.Properties.opposite-suc
-
In
Data.Integer.DivMod
the operator names have been renamed to be consistent with those inData.Nat.DivMod
:_divℕ_ ↦ _/ℕ_ _div_ ↦ _/_ _modℕ_ ↦ _%ℕ_ _mod_ ↦ _%_
-
In
Data.Integer.Properties
references to variables in names have been made consistent so thatm
,n
always refer to naturals andi
andj
always refer to integers:n≮n ↦ i≮i ∣n∣≡0⇒n≡0 ↦ ∣i∣≡0⇒i≡0 ∣-n∣≡∣n∣ ↦ ∣-i∣≡∣i∣ 0≤n⇒+∣n∣≡n ↦ 0≤i⇒+∣i∣≡i +∣n∣≡n⇒0≤n ↦ +∣i∣≡i⇒0≤i +∣n∣≡n⊎+∣n∣≡-n ↦ +∣i∣≡i⊎+∣i∣≡-i ∣m+n∣≤∣m∣+∣n∣ ↦ ∣i+j∣≤∣i∣+∣j∣ ∣m-n∣≤∣m∣+∣n∣ ↦ ∣i-j∣≤∣i∣+∣j∣ signₙ◃∣n∣≡n ↦ signᵢ◃∣i∣≡i ◃-≡ ↦ ◃-cong ∣m-n∣≡∣n-m∣ ↦ ∣i-j∣≡∣j-i∣ m≡n⇒m-n≡0 ↦ i≡j⇒i-j≡0 m-n≡0⇒m≡n ↦ i-j≡0⇒i≡j m≤n⇒m-n≤0 ↦ i≤j⇒i-j≤0 m-n≤0⇒m≤n ↦ i-j≤0⇒i≤j m≤n⇒0≤n-m ↦ i≤j⇒0≤j-i 0≤n-m⇒m≤n ↦ 0≤i-j⇒j≤i n≤1+n ↦ i≤suc[i] n≢1+n ↦ i≢suc[i] m≤pred[n]⇒m<n ↦ i≤pred[j]⇒i<j m<n⇒m≤pred[n] ↦ i<j⇒i≤pred[j] -1*n≡-n ↦ -1*i≡-i m*n≡0⇒m≡0∨n≡0 ↦ i*j≡0⇒i≡0∨j≡0 ∣m*n∣≡∣m∣*∣n∣ ↦ ∣i*j∣≡∣i∣*∣j∣ m≤m+n ↦ i≤i+j n≤m+n ↦ i≤j+i m-n≤m ↦ i≤i-j +-pos-monoʳ-≤ ↦ +-monoʳ-≤ +-neg-monoʳ-≤ ↦ +-monoʳ-≤ *-monoʳ-≤-pos ↦ *-monoʳ-≤-nonNeg *-monoˡ-≤-pos ↦ *-monoˡ-≤-nonNeg *-monoʳ-≤-neg ↦ *-monoʳ-≤-nonPos *-monoˡ-≤-neg ↦ *-monoˡ-≤-nonPos *-cancelˡ-<-neg ↦ *-cancelˡ-<-nonPos *-cancelʳ-<-neg ↦ *-cancelʳ-<-nonPos ^-semigroup-morphism ↦ ^-isMagmaHomomorphism ^-monoid-morphism ↦ ^-isMonoidHomomorphism
-
In
Data.List.Properties
:zipWith-identityˡ ↦ zipWith-zeroˡ zipWith-identityʳ ↦ zipWith-zeroʳ
-
In
Data.Nat.Properties
:suc[pred[n]]≡n ↦ suc-pred
-
In
Data.Rational.Unnormalised.Properties
:↥[p/q]≡p ↦ ↥[n/d]≡n ↧[p/q]≡q ↦ ↧[n/d]≡d *-monoˡ-≤-pos ↦ *-monoˡ-≤-nonNeg *-monoʳ-≤-pos ↦ *-monoʳ-≤-nonNeg *-monoˡ-≤-neg ↦ *-monoˡ-≤-nonPos *-monoʳ-≤-neg ↦ *-monoʳ-≤-nonPos *-cancelˡ-<-pos ↦ *-cancelˡ-<-nonNeg *-cancelʳ-<-pos ↦ *-cancelʳ-<-nonNeg positive⇒nonNegative ↦ pos⇒nonNeg negative⇒nonPositive ↦ neg⇒nonPos negative<positive ↦ neg<pos
-
In
Data.Rational.Properties
:*-monoʳ-≤-neg ↦ *-monoʳ-≤-nonPos *-monoˡ-≤-neg ↦ *-monoˡ-≤-nonPos *-monoʳ-≤-pos ↦ *-monoʳ-≤-nonNeg *-monoˡ-≤-pos ↦ *-monoˡ-≤-nonNeg *-cancelˡ-<-pos ↦ *-cancelˡ-<-nonNeg *-cancelʳ-<-pos ↦ *-cancelʳ-<-nonNeg *-cancelˡ-<-neg ↦ *-cancelˡ-<-nonPos *-cancelʳ-<-neg ↦ *-cancelʳ-<-nonPos negative<positive ↦ neg<pos
-
In
Data.Vec.Properties
:[]≔-++-inject+ ↦ []≔-++-↑ˡ []≔-++-raise ↦ []≔-++-↑ʳ idIsFold ↦ id-is-foldr sum-++-commute ↦ sum-++
and the type of the proof
zipWith-comm
has been generalised from:zipWith-comm : ∀ {f : A → A → B} (comm : ∀ x y → f x y ≡ f y x) (xs ys : Vec A n) → zipWith f xs ys ≡ zipWith f ys xs
to
zipWith-comm : ∀ {f : A → B → C} {g : B → A → C} (comm : ∀ x y → f x y ≡ g y x) (xs : Vec A n) ys → zipWith f xs ys ≡ zipWith g ys xs
-
In
Function.Construct.Composition
:_∘-⟶_ ↦ _⟶-∘_ _∘-↣_ ↦ _↣-∘_ _∘-↠_ ↦ _↠-∘_ _∘-⤖_ ↦ _⤖-∘_ _∘-⇔_ ↦ _⇔-∘_ _∘-↩_ ↦ _↩-∘_ _∘-↪_ ↦ _↪-∘_ _∘-↔_ ↦ _↔-∘_
- In
Function.Construct.Identity
:
id-⟶ ↦ ⟶-id id-↣ ↦ ↣-id id-↠ ↦ ↠-id id-⤖ ↦ ⤖-id id-⇔ ↦ ⇔-id id-↩ ↦ ↩-id id-↪ ↦ ↪-id id-↔ ↦ ↔-id
- In
-
In
Function.Construct.Symmetry
:sym-⤖ ↦ ⤖-sym sym-⇔ ↦ ⇔-sym sym-↩ ↦ ↩-sym sym-↪ ↦ ↪-sym sym-↔ ↦ ↔-sym
-
In
Foreign.Haskell.Either
andForeign.Haskell.Pair
:toForeign ↦ Foreign.Haskell.Coerce.coerce fromForeign ↦ Foreign.Haskell.Coerce.coerce
-
In
Relation.Binary.Properties.Preorder
:invIsPreorder ↦ converse-isPreorder invPreorder ↦ converse-preorder
- This fixes the fact we had picked the wrong name originally. The erased modality
corresponds to @0 whereas the irrelevance one corresponds to
.
.
-
Operations for module-like algebraic structures:
Algebra.Module.Core
-
Constructive algebraic structures with apartness relations:
Algebra.Apartness Algebra.Apartness.Bundles Algebra.Apartness.Structures Algebra.Apartness.Properties.CommutativeHeytingAlgebra Relation.Binary.Properties.ApartnessRelation
-
Algebraic structures obtained by flipping their binary operations:
Algebra.Construct.Flip.Op
-
Morphisms between module-like algebraic structures:
Algebra.Module.Morphism.Construct.Composition Algebra.Module.Morphism.Construct.Identity Algebra.Module.Morphism.Definitions Algebra.Module.Morphism.Structures
-
Identity morphisms and composition of morphisms between algebraic structures:
Algebra.Morphism.Construct.Composition Algebra.Morphism.Construct.Identity
-
'Optimised' tail-recursive exponentiation properties:
Algebra.Properties.Semiring.Exp.TailRecursiveOptimised
-
A definition of infinite streams using coinductive records:
Codata.Guarded.Stream Codata.Guarded.Stream.Properties Codata.Guarded.Stream.Relation.Binary.Pointwise Codata.Guarded.Stream.Relation.Unary.All Codata.Guarded.Stream.Relation.Unary.Any
-
A small library for function arguments with default values:
Data.Default
-
A small library for a non-empty fresh list:
Data.List.Fresh.NonEmpty
-
Combinations and permutations for ℕ.
Data.Nat.Combinatorics Data.Nat.Combinatorics.Base Data.Nat.Combinatorics.Spec
-
Reflection utilities for some specific types:
Data.List.Reflection Data.Vec.Reflection
-
The
All
predicate over non-empty lists:Data.List.NonEmpty.Relation.Unary.All
-
A small library for heterogenous equational reasoning on vectors:
Data.Vec.Properties.Heterogeneous
-
Show module for unnormalised rationals:
Data.Rational.Unnormalised.Show
-
Properties of bijections:
Function.Consequences Function.Properties.Bijection Function.Properties.RightInverse Function.Properties.Surjection
-
In order to improve modularity, the contents of
Relation.Binary.Lattice
has been split out into the standard:Relation.Binary.Lattice.Definitions Relation.Binary.Lattice.Structures Relation.Binary.Lattice.Bundles
All contents is re-exported by
Relation.Binary.Lattice
as before. -
Algebraic properties of
_∩_
and_∪_
for predicatesRelation.Unary.Algebra
-
Both versions of equality on predications are equivalences
Relation.Unary.Relation.Binary.Equality
-
The subset relations on predicates define an order
Relation.Unary.Relation.Binary.Subset
-
Polymorphic versions of some unary relations and their properties
Relation.Unary.Polymorphic Relation.Unary.Polymorphic.Properties
-
Alpha equality over reflected terms
Reflection.AST.AlphaEquality
-
cong!
tactic for deriving arguments tocong
Tactic.Cong
-
Various system types and primitives:
System.Clock.Primitive System.Clock System.Console.ANSI System.Directory.Primitive System.Directory System.FilePath.Posix.Primitive System.FilePath.Posix System.Process.Primitive System.Process
-
A golden testing library with test pools, an options parser, a runner:
Test.Golden
-
New interfaces for using Haskell datatypes:
Foreign.Haskell.List.NonEmpty
-
Added new module
Algebra.Properties.RingWithoutOne
:-‿distribˡ-* : ∀ x y → - (x * y) ≈ - x * y -‿distribʳ-* : ∀ x y → - (x * y) ≈ x * - y
-
An implementation of M-types with
--guardedness
flag:Codata.Guarded.M
-
Port of
Linked
toVec
:Data.Vec.Relation.Unary.Linked Data.Vec.Relation.Unary.Linked.Properties
-
The module
Algebra
now publicly re-exports the contents ofAlgebra.Structures.Biased
. -
Added new definitions to
Algebra.Bundles
:record UnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) record InvertibleMagma c ℓ : Set (suc (c ⊔ ℓ)) record InvertibleUnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) record RawQuasiGroup c ℓ : Set (suc (c ⊔ ℓ)) record Quasigroup c ℓ : Set (suc (c ⊔ ℓ)) record RawLoop c ℓ : Set (suc (c ⊔ ℓ)) record Loop c ℓ : Set (suc (c ⊔ ℓ)) record RingWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) record KleeneAlgebra c ℓ : Set (suc (c ⊔ ℓ)) record RawRingWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) record Quasiring c ℓ : Set (suc (c ⊔ ℓ)) where record Nearring c ℓ : Set (suc (c ⊔ ℓ)) where
and the existing record
Lattice
now provides∨-commutativeSemigroup : CommutativeSemigroup c ℓ ∧-commutativeSemigroup : CommutativeSemigroup c ℓ
and their corresponding algebraic subbundles.
-
Added new proofs to
Algebra.Consequences.Setoid
:comm+idˡ⇒id : Commutative _•_ → LeftIdentity e _•_ → Identity e _•_ comm+idʳ⇒id : Commutative _•_ → RightIdentity e _•_ → Identity e _•_ comm+zeˡ⇒ze : Commutative _•_ → LeftZero e _•_ → Zero e _•_ comm+zeʳ⇒ze : Commutative _•_ → RightZero e _•_ → Zero e _•_ comm+invˡ⇒inv : Commutative _•_ → LeftInverse e _⁻¹ _•_ → Inverse e _⁻¹ _•_ comm+invʳ⇒inv : Commutative _•_ → RightInverse e _⁻¹ _•_ → Inverse e _⁻¹ _•_ comm+distrˡ⇒distr : Commutative _•_ → _•_ DistributesOverˡ _◦_ → _•_ DistributesOver _◦_ comm+distrʳ⇒distr : Commutative _•_ → _•_ DistributesOverʳ _◦_ → _•_ DistributesOver _◦_ distrib+absorbs⇒distribˡ : Associative _•_ → Commutative _◦_ → _•_ Absorbs _◦_ → _◦_ Absorbs _•_ → _◦_ DistributesOver _•_ → _•_ DistributesOverˡ _◦_
-
Added new functions to
Algebra.Construct.DirectProduct
:rawSemiring : RawSemiring a ℓ₁ → RawSemiring b ℓ₂ → RawSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawRing : RawRing a ℓ₁ → RawRing b ℓ₂ → RawRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂) semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ₁ → SemiringWithoutAnnihilatingZero b ℓ₂ → SemiringWithoutAnnihilatingZero (a ⊔ b) (ℓ₁ ⊔ ℓ₂) semiring : Semiring a ℓ₁ → Semiring b ℓ₂ → Semiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) commutativeSemiring : CommutativeSemiring a ℓ₁ → CommutativeSemiring b ℓ₂ → CommutativeSemiring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) ring : Ring a ℓ₁ → Ring b ℓ₂ → Ring (a ⊔ b) (ℓ₁ ⊔ ℓ₂) commutativeRing : CommutativeRing a ℓ₁ → CommutativeRing b ℓ₂ → CommutativeRing (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawQuasigroup : RawQuasigroup a ℓ₁ → RawQuasigroup b ℓ₂ → RawQuasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂) rawLoop : RawLoop a ℓ₁ → RawLoop b ℓ₂ → RawLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) unitalMagma : UnitalMagma a ℓ₁ → UnitalMagma b ℓ₂ → UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) invertibleMagma : InvertibleMagma a ℓ₁ → InvertibleMagma b ℓ₂ → InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁ → InvertibleUnitalMagma b ℓ₂ → InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂) quasigroup : Quasigroup a ℓ₁ → Quasigroup b ℓ₂ → Quasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂) loop : Loop a ℓ₁ → Loop b ℓ₂ → Loop (a ⊔ b) (ℓ₁ ⊔ ℓ₂) kleeneAlgebra : KleeneAlgebra a ℓ₁ → KleeneAlgebra b ℓ₂ → KleeneAlgebra (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
* Added new definition to `Algebra.Definitions`:
```agda
LeftDividesˡ : Op₂ A → Op₂ A → Set _
LeftDividesʳ : Op₂ A → Op₂ A → Set _
RightDividesˡ : Op₂ A → Op₂ A → Set _
RightDividesʳ : Op₂ A → Op₂ A → Set _
LeftDivides : Op₂ A → Op₂ A → Set _
RightDivides : Op₂ A → Op₂ A → Set _
LeftInvertible e _∙_ x = ∃[ x⁻¹ ] (x⁻¹ ∙ x) ≈ e
RightInvertible e _∙_ x = ∃[ x⁻¹ ] (x ∙ x⁻¹) ≈ e
Invertible e _∙_ x = ∃[ x⁻¹ ] ((x⁻¹ ∙ x) ≈ e) × ((x ∙ x⁻¹) ≈ e)
-
Added new functions to
Algebra.Definitions.RawSemiring
:_^[_]*_ : A → ℕ → A → A _^ᵗ_ : A → ℕ → A
-
Added new proofs to
Algebra.Properties.CommutativeSemigroup
:interchange : Interchangable _∙_ _∙_
-
Added new definitions to
Algebra.Structures
:record IsUnitalMagma (_∙_ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsInvertibleMagma (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) record IsInvertibleUnitalMagma (_∙_ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) record IsQuasigroup (∙ \\ // : Op₂ A) : Set (a ⊔ ℓ) record IsLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) record IsRingWithoutOne (+ * : Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ) record IsKleeneAlgebra (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) record IsQuasiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where record IsNearring (+ * : Op₂ A) (0# 1# : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
and the existing record
IsLattice
now provides∨-isCommutativeSemigroup : IsCommutativeSemigroup ∨ ∧-isCommutativeSemigroup : IsCommutativeSemigroup ∧
and their corresponding algebraic substructures.
-
Added new records to
Algebra.Morphism.Structures
:record IsQuasigroupHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsQuasigroupMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsQuasigroupIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) record IsLoopHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsLoopMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsLoopIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) record IsRingWithoutOneHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsRingWithoutOneMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) record IsRingWithoutOneIsoMorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
-
Added new functions in
Category.Monad.State
:runState : State s a → s → a × s evalState : State s a → s → a execState : State s a → s → s
-
Added new proofs in
Data.Bool.Properties
:<-wellFounded : WellFounded _<_
-
Added new functions in
Data.Fin.Base
:finToFun : Fin (m ^ n) → (Fin n → Fin m) funToFin : (Fin m → Fin n) → Fin (n ^ m) quotient : Fin (m * n) → Fin m remainder : Fin (m * n) → Fin n
-
Added new proofs in
Data.Fin.Induction
: every (strict) partial order is well-founded and Noetherian.spo-wellFounded : ∀ {r} {_⊏_ : Rel (Fin n) r} → IsStrictPartialOrder _≈_ _⊏_ → WellFounded _⊏_ spo-noetherian : ∀ {r} {_⊏_ : Rel (Fin n) r} → IsStrictPartialOrder _≈_ _⊏_ → WellFounded (flip _⊏_)
-
Added new definitions and proofs in
Data.Fin.Permutation
:insert : Fin (suc m) → Fin (suc n) → Permutation m n → Permutation (suc m) (suc n) insert-punchIn : insert i j π ⟨$⟩ʳ punchIn i k ≡ punchIn j (π ⟨$⟩ʳ k) insert-remove : insert i (π ⟨$⟩ʳ i) (remove i π) ≈ π remove-insert : remove i (insert i j π) ≈ π
-
In
Data.Fin.Properties
: the proof that an injection from a typeA
intoFin n
induces a decision procedure for_≡_
onA
has been generalized to other equivalences overA
(i.e. to arbitrary setoids), and renamed fromeq?
to the more descriptiveinj⇒≟
andinj⇒decSetoid
. -
Added new proofs in
Data.Fin.Properties
:1↔⊤ : Fin 1 ↔ ⊤ 0≢1+n : zero ≢ suc i ↑ˡ-injective : i ↑ˡ n ≡ j ↑ˡ n → i ≡ j ↑ʳ-injective : n ↑ʳ i ≡ n ↑ʳ j → i ≡ j finTofun-funToFin : funToFin ∘ finToFun ≗ id funTofin-funToFun : finToFun (funToFin f) ≗ f ^↔→ : Extensionality _ _ → Fin (m ^ n) ↔ (Fin n → Fin m) toℕ-mono-< : i < j → toℕ i ℕ.< toℕ j toℕ-mono-≤ : i ≤ j → toℕ i ℕ.≤ toℕ j toℕ-cancel-≤ : toℕ i ℕ.≤ toℕ j → i ≤ j toℕ-cancel-< : toℕ i ℕ.< toℕ j → i < j toℕ-combine : toℕ (combine i j) ≡ k ℕ.* toℕ i ℕ.+ toℕ j combine-injectiveˡ : combine i j ≡ combine k l → i ≡ k combine-injectiveʳ : combine i j ≡ combine k l → j ≡ l combine-injective : combine i j ≡ combine k l → i ≡ k × j ≡ l combine-surjective : ∀ i → ∃₂ λ j k → combine j k ≡ i combine-monoˡ-< : i < j → combine i k < combine j l lower₁-injective : lower₁ i n≢i ≡ lower₁ j n≢j → i ≡ j pinch-injective : suc i ≢ j → suc i ≢ k → pinch i j ≡ pinch i k → j ≡ k i<1+i : i < suc i injective⇒≤ : ∀ {f : Fin m → Fin n} → Injective f → m ℕ.≤ n <⇒notInjective : ∀ {f : Fin m → Fin n} → n ℕ.< m → ¬ (Injective f) ℕ→Fin-notInjective : ∀ (f : ℕ → Fin n) → ¬ (Injective f) cantor-schröder-bernstein : ∀ {f : Fin m → Fin n} {g : Fin n → Fin m} → Injective f → Injective g → m ≡ n
-
Added new functions in
Data.Integer.Base
:_^_ : ℤ → ℕ → ℤ
-
Added new proofs in
Data.Integer.Properties
:sign-cong′ : s₁ ◃ n₁ ≡ s₂ ◃ n₂ → s₁ ≡ s₂ ⊎ (n₁ ≡ 0 × n₂ ≡ 0) ≤-⊖ : m ℕ.≤ n → n ⊖ m ≡ + (n ∸ m) ∣⊖∣-≤ : m ℕ.≤ n → ∣ m ⊖ n ∣ ≡ n ∸ m ∣-∣-≤ : i ≤ j → + ∣ i - j ∣ ≡ j - i i^n≡0⇒i≡0 : i ^ n ≡ 0ℤ → i ≡ 0ℤ ^-identityʳ : i ^ 1 ≡ i ^-zeroˡ : 1 ^ n ≡ 1 ^-*-assoc : (i ^ m) ^ n ≡ i ^ (m ℕ.* n) ^-distribˡ-+-* : i ^ (m ℕ.+ n) ≡ i ^ m * i ^ n *-rawMagma : RawMagma 0ℓ 0ℓ *-1-rawMonoid : RawMonoid 0ℓ 0ℓ ^-isMagmaHomomorphism : IsMagmaHomomorphism ℕ.+-rawMagma *-rawMagma (i ^_) ^-isMonoidHomomorphism : IsMonoidHomomorphism ℕ.+-0-rawMonoid *-1-rawMonoid (i ^_)
-
Added new functions in
Data.List
:takeWhileᵇ : (A → Bool) → List A → List A dropWhileᵇ : (A → Bool) → List A → List A filterᵇ : (A → Bool) → List A → List A partitionᵇ : (A → Bool) → List A → List A × List A spanᵇ : (A → Bool) → List A → List A × List A breakᵇ : (A → Bool) → List A → List A × List A linesByᵇ : (A → Bool) → List A → List (List A) wordsByᵇ : (A → Bool) → List A → List (List A) derunᵇ : (A → A → Bool) → List A → List A deduplicateᵇ : (A → A → Bool) → List A → List A
-
Added new proofs in
Data.List.Relation.Binary.Lex.Strict
:xs≮[] : ¬ xs < []
-
Added new proofs to
Data.List.Relation.Binary.Permutation.Propositional.Properties
:Any-resp-[σ⁻¹∘σ] : (σ : xs ↭ ys) → (ix : Any P xs) → Any-resp-↭ (trans σ (↭-sym σ)) ix ≡ ix ∈-resp-[σ⁻¹∘σ] : (σ : xs ↭ ys) → (ix : x ∈ xs) → ∈-resp-↭ (trans σ (↭-sym σ)) ix ≡ ix
-
Added new functions in
Data.List.Relation.Unary.All
:decide : Π[ P ∪ Q ] → Π[ All P ∪ Any Q ]
-
Added new functions in
Data.List.Fresh.Relation.Unary.All
:decide : Π[ P ∪ Q ] → Π[ All {R = R} P ∪ Any Q ]
-
Add new proofs in
Data.List.Properties
:∈⇒∣product : n ∈ ns → n ∣ product ns ∷ʳ-++ : xs ∷ʳ a ++ ys ≡ xs ++ a ∷ ys
-
Added new patterns and definitions to
Data.Nat.Base
:pattern z<s {n} = s≤s (z≤n {n}) pattern s<s {m} {n} m<n = s≤s {m} {n} m<n pattern <′-base = ≤′-refl pattern <′-step {n} m<′n = ≤′-step {n} m<′n
-
Added new definitions and proofs to
Data.Nat.Primality
:Composite : ℕ → Set composite? : Decidable composite composite⇒¬prime : Composite n → ¬ Prime n ¬composite⇒prime : 2 ≤ n → ¬ Composite n → Prime n prime⇒¬composite : Prime n → ¬ Composite n ¬prime⇒composite : 2 ≤ n → ¬ Prime n → Composite n euclidsLemma : Prime p → p ∣ m * n → p ∣ m ⊎ p ∣ n
-
Added new proofs in
Data.Nat.Properties
:nonZero? : Decidable NonZero n≮0 : n ≮ 0 n+1+m≢m : n + suc m ≢ m m*n≡0⇒m≡0 : .{{_ : NonZero n}} → m * n ≡ 0 → m ≡ 0 n>0⇒n≢0 : n > 0 → n ≢ 0 m^n≢0 : .{{_ : NonZero m}} → NonZero (m ^ n) m*n≢0 : .{{_ : NonZero m}} .{{_ : NonZero n}} → NonZero (m * n) m≤n⇒n∸m≤n : m ≤ n → n ∸ m ≤ n ≤-pred : suc m ≤ suc n → m ≤ n s<s-injective : ∀ {p q : m < n} → s<s p ≡ s<s q → p ≡ q <-pred : suc m < suc n → m < n <-step : m < n → m < 1 + n m<1+n⇒m<n∨m≡n : m < suc n → m < n ⊎ m ≡ n z<′s : zero <′ suc n s<′s : m <′ n → suc m <′ suc n <⇒<′ : m < n → m <′ n <′⇒< : m <′ n → m < n 1≤n! : 1 ≤ n ! _!≢0 : NonZero (n !) _!*_!≢0 : NonZero (m ! * n !) anyUpTo? : ∀ (P? : U.Decidable P) (v : ℕ) → Dec (∃ λ n → n < v × P n) allUpTo? : ∀ (P? : U.Decidable P) (v : ℕ) → Dec (∀ {n} → n < v → P n)
-
Added new functions in
Data.Nat
:_! : ℕ → ℕ
-
Added new proofs in
Data.Nat.DivMod
:m%n≤n : .{{_ : NonZero n}} → m % n ≤ n m*n/m!≡n/[m∸1]! : .{{_ : NonZero m}} → m * n / m ! ≡ n / (pred m) !
-
Added new proofs in
Data.Nat.Divisibility
:n∣m*n*o : n ∣ m * n * o m*n∣⇒m∣ : m * n ∣ i → m ∣ i m*n∣⇒n∣ : m * n ∣ i → n ∣ i m≤n⇒m!∣n! : m ≤ n → m ! ∣ n ! m/n/o≡m/[n*o] : .{{NonZero n}} .{{NonZero o}} → n * o ∣ m → (m / n) / o ≡ m / (n * o)
-
Added new patterns in
Data.Nat.Reflection
:pattern `ℕ = def (quote ℕ) [] pattern `zero = con (quote ℕ.zero) [] pattern `suc x = con (quote ℕ.suc) (x ⟨∷⟩ [])
-
Added new rounding functions in
Data.Rational.Base
:floor ceiling truncate round ⌊_⌋ ⌈_⌉ [_] : ℚ → ℤ fracPart : ℚ → ℚ
-
Added new definitions and proofs in
Data.Rational.Properties
:+-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ +-*-rawSemiring : RawSemiring 0ℓ 0ℓ toℚᵘ-isNearSemiringHomomorphism-+-* : IsNearSemiringHomomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ toℚᵘ-isNearSemiringMonomorphism-+-* : IsNearSemiringMonomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ toℚᵘ-isSemiringHomomorphism-+-* : IsSemiringHomomorphism +-*-rawSemiring ℚᵘ.+-*-rawSemiring toℚᵘ toℚᵘ-isSemiringMonomorphism-+-* : IsSemiringMonomorphism +-*-rawSemiring ℚᵘ.+-*-rawSemiring toℚᵘ pos⇒nonZero : .{{Positive p}} → NonZero p neg⇒nonZero : .{{Negative p}} → NonZero p nonZero⇒1/nonZero : .{{_ : NonZero p}} → NonZero (1/ p)
-
Added new rounding functions in
Data.Rational.Unnormalised.Base
:floor ceiling truncate round ⌊_⌋ ⌈_⌉ [_] : ℚᵘ → ℤ fracPart : ℚᵘ → ℚᵘ
-
Added new definitions in
Data.Rational.Unnormalised.Properties
:+-*-rawNearSemiring : RawNearSemiring 0ℓ 0ℓ +-*-rawSemiring : RawSemiring 0ℓ 0ℓ ≰⇒≥ : _≰_ ⇒ _≥_ *-mono-≤-nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative r}} → p ≤ q → r ≤ s → p * r ≤ q * s *-mono-<-nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative r}} → p < q → r < s → p * r < q * s 1/-antimono-≤-pos : .{{_ : Positive p}} .{{_ : Positive q}} → p ≤ q → 1/ q ≤ 1/ p ⊓-mono-< : _⊓_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ ⊔-mono-< : _⊔_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ pos⇒nonZero : .{{_ : Positive p}} → NonZero p neg⇒nonZero : .{{_ : Negative p}} → NonZero p pos+pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p + q) nonNeg+nonNeg⇒nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative q}} → NonNegative (p + q) pos*pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p * q) nonNeg*nonNeg⇒nonNeg : .{{_ : NonNegative p}} .{{_ : NonNegative q}} → NonNegative (p * q) pos⊓pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p ⊓ q) pos⊔pos⇒pos : .{{_ : Positive p}} .{{_ : Positive q}} → Positive (p ⊔ q) 1/nonZero⇒nonZero : .{{_ : NonZero p}} → NonZero (1/ p)
-
Added new proof to
Data.Product.Properties
:map-cong : f ≗ g → h ≗ i → map f h ≗ map g i
-
Added new definitions to
Data.Product.Properties
andFunction.Related.TypeIsomorphisms
for convenience:Σ-≡,≡→≡ : (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) → p₁ ≡ p₂ Σ-≡,≡←≡ : p₁ ≡ p₂ → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) ×-≡,≡→≡ : (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂) → p₁ ≡ p₂ ×-≡,≡←≡ : p₁ ≡ p₂ → (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂)
-
Added new proofs to
Data.Sign.Properties
:*-inverse : Inverse + id _*_ *-isCommutativeSemigroup : IsCommutativeSemigroup _*_ *-isCommutativeMonoid : IsCommutativeMonoid _*_ + *-isGroup : IsGroup _*_ + id *-isAbelianGroup : IsAbelianGroup _*_ + id *-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ *-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-group : Group 0ℓ 0ℓ *-abelianGroup : AbelianGroup 0ℓ 0ℓ
-
Added new functions in
Data.String.Base
:wordsByᵇ : (Char → Bool) → String → List String linesByᵇ : (Char → Bool) → String → List String
-
Added new proofs in
Data.String.Properties
:≤-isDecTotalOrder-≈ : IsDecTotalOrder _≈_ _≤_ ≤-decTotalOrder-≈ : DecTotalOrder _ _ _
-
Added new definitions in
Data.Sum.Properties
:swap-↔ : (A ⊎ B) ↔ (B ⊎ A)
-
Added new proofs in
Data.Sum.Properties
:map-assocˡ : (f : A → C) (g : B → D) (h : C → F) → map (map f g) h ∘ assocˡ ≗ assocˡ ∘ map f (map g h) map-assocʳ : (f : A → C) (g : B → D) (h : C → F) → map f (map g h) ∘ assocʳ ≗ assocʳ ∘ map (map f g) h
-
Added new definitions in
Data.Vec.Base
:truncate : m ≤ n → Vec A n → Vec A m pad : m ≤ n → A → Vec A m → Vec A n FoldrOp A B = ∀ {n} → A → B n → B (suc n) FoldlOp A B = ∀ {n} → B n → A → B (suc n) foldr′ : (A → B → B) → B → Vec A n → B foldl′ : (B → A → B) → B → Vec A n → B countᵇ : (A → Bool) → Vec A n → ℕ iterate : (A → A) → A → Vec A n diagonal : Vec (Vec A n) n → Vec A n DiagonalBind._>>=_ : Vec A n → (A → Vec B n) → Vec B n _ʳ++_ : Vec A m → Vec A n → Vec A (m + n)
-
Added new instance in
Data.Vec.Categorical
:monad : RawMonad (λ (A : Set a) → Vec A n)
-
Added new proofs in
Data.Vec.Properties
:padRight-refl : padRight ≤-refl a xs ≡ xs padRight-replicate : replicate a ≡ padRight le a (replicate a) padRight-trans : padRight (≤-trans m≤n n≤p) a xs ≡ padRight n≤p a (padRight m≤n a xs) truncate-refl : truncate ≤-refl xs ≡ xs truncate-trans : truncate (≤-trans m≤n n≤p) xs ≡ truncate m≤n (truncate n≤p xs) truncate-padRight : truncate m≤n (padRight m≤n a xs) ≡ xs map-const : map (const x) xs ≡ replicate x map-⊛ : map f xs ⊛ map g xs ≡ map (f ˢ g) xs map-++ : map f (xs ++ ys) ≡ map f xs ++ map f ys map-is-foldr : map f ≗ foldr (Vec B) (λ x ys → f x ∷ ys) [] map-∷ʳ : map f (xs ∷ʳ x) ≡ (map f xs) ∷ʳ (f x) map-reverse : map f (reverse xs) ≡ reverse (map f xs) map-ʳ++ : map f (xs ʳ++ ys) ≡ map f xs ʳ++ map f ys ⊛-is->>= : fs ⊛ xs ≡ fs >>= flip map xs ++-is-foldr : xs ++ ys ≡ foldr ((Vec A) ∘ (_+ n)) _∷_ ys xs []≔-++-↑ʳ : (xs ++ ys) [ m ↑ʳ i ]≔ y ≡ xs ++ (ys [ i ]≔ y) unfold-ʳ++ : xs ʳ++ ys ≡ reverse xs ++ ys foldl-universal : ∀ (h : ∀ {c} (C : ℕ → Set c) (g : FoldlOp A C) (e : C zero) → ∀ {n} → Vec A n → C n) → (∀ ... → h C g e [] ≡ e) → (∀ ... → h C g e ∘ (x ∷_) ≗ h (C ∘ suc) g (g e x)) → h B f e ≗ foldl B f e foldl-fusion : h d ≡ e → (∀ ... → h (f b x) ≡ g (h b) x) → h ∘ foldl B f d ≗ foldl C g e foldl-∷ʳ : foldl B f e (ys ∷ʳ y) ≡ f (foldl B f e ys) y foldl-[] : foldl B f e [] ≡ e foldl-reverse : foldl B {n} f e ∘ reverse ≗ foldr B (flip f) e foldr-[] : foldr B f e [] ≡ e foldr-++ : foldr B f e (xs ++ ys) ≡ foldr (B ∘ (_+ n)) f (foldr B f e ys) xs foldr-∷ʳ : foldr B f e (ys ∷ʳ y) ≡ foldr (B ∘ suc) f (f y e) ys foldr-ʳ++ : foldr B f e (xs ʳ++ ys) ≡ foldl (B ∘ (_+ n)) (flip f) (foldr B f e ys) xs foldr-reverse : foldr B f e ∘ reverse ≗ foldl B (flip f) e ∷ʳ-injective : xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y ∷ʳ-injectiveˡ : xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys ∷ʳ-injectiveʳ : xs ∷ʳ x ≡ ys ∷ʳ y → x ≡ y reverse-∷ : reverse (x ∷ xs) ≡ reverse xs ∷ʳ x reverse-involutive : Involutive _≡_ reverse reverse-reverse : reverse xs ≡ ys → reverse ys ≡ xs reverse-injective : reverse xs ≡ reverse ys → xs ≡ ys transpose-replicate : transpose (replicate xs) ≡ map replicate xs
-
Added new proofs in
Data.Vec.Relation.Binary.Lex.Strict
:xs≮[] : ∀ {n} (xs : Vec A n) → ¬ xs < []
-
Added new functions in
Data.Vec.Relation.Unary.All
:decide : Π[ P ∪ Q ] → Π[ All P ∪ Any Q ]
-
Added vector associativity proof to
Data.Vec.Relation.Binary.Equality.Setoid
:++-assoc : (xs ++ ys) ++ zs ≋ xs ++ (ys ++ zs)
-
Added new proofs in
Function.Construct.Symmetry
:bijective : Bijective ≈₁ ≈₂ f → Symmetric ≈₂ → Transitive ≈₂ → Congruent ≈₁ ≈₂ f → Bijective ≈₂ ≈₁ f⁻¹ isBijection : IsBijection ≈₁ ≈₂ f → Congruent ≈₂ ≈₁ f⁻¹ → IsBijection ≈₂ ≈₁ f⁻¹ isBijection-≡ : IsBijection ≈₁ _≡_ f → IsBijection _≡_ ≈₁ f⁻¹ bijection : Bijection R S → Congruent IB.Eq₂._≈_ IB.Eq₁._≈_ f⁻¹ → Bijection S R bijection-≡ : Bijection R (setoid B) → Bijection (setoid B) R sym-⤖ : A ⤖ B → B ⤖ A
-
Added new operations in
Function.Strict
:_!|>_ : (a : A) → (∀ a → B a) → B a _!|>′_ : A → (A → B) → B
-
Added new definition to the
Surjection
module inFunction.Related.Surjection
:f⁻ = proj₁ ∘ surjective
-
Added new operations in
IO
:Colist.forM : Colist A → (A → IO B) → IO (Colist B) Colist.forM′ : Colist A → (A → IO B) → IO ⊤ List.forM : List A → (A → IO B) → IO (List B) List.forM′ : List A → (A → IO B) → IO ⊤
-
Added new operations in
IO.Base
:lift! : IO A → IO (Lift b A) _<$_ : B → IO A → IO B _=<<_ : (A → IO B) → IO A → IO B _<<_ : IO B → IO A → IO B lift′ : Prim.IO ⊤ → IO {a} ⊤ when : Bool → IO ⊤ → IO ⊤ unless : Bool → IO ⊤ → IO ⊤ whenJust : Maybe A → (A → IO ⊤) → IO ⊤ untilJust : IO (Maybe A) → IO A
-
Added new functions in
Reflection.AST.Term
:stripPis : Term → List (String × Arg Type) × Term prependLams : List (String × Visibility) → Term → Term prependHLams : List String → Term → Term prependVLams : List String → Term → Term
-
Added new operations in
Relation.Binary.Construct.Closure.Equivalence
:fold : IsEquivalence _∼_ → _⟶_ ⇒ _∼_ → EqClosure _⟶_ ⇒ _∼_ gfold : IsEquivalence _∼_ → _⟶_ =[ f ]⇒ _∼_ → EqClosure _⟶_ =[ f ]⇒ _∼_ return : _⟶_ ⇒ EqClosure _⟶_ join : EqClosure (EqClosure _⟶_) ⇒ EqClosure _⟶_ _⋆ : _⟶₁_ ⇒ EqClosure _⟶₂_ → EqClosure _⟶₁_ ⇒ EqClosure _⟶₂_
-
Added new operations in
Relation.Binary.Construct.Closure.Symmetric
:fold : Symmetric _∼_ → _⟶_ ⇒ _∼_ → SymClosure _⟶_ ⇒ _∼_ gfold : Symmetric _∼_ → _⟶_ =[ f ]⇒ _∼_ → SymClosure _⟶_ =[ f ]⇒ _∼_ return : _⟶_ ⇒ SymClosure _⟶_ join : SymClosure (SymClosure _⟶_) ⇒ SymClosure _⟶_ _⋆ : _⟶₁_ ⇒ SymClosure _⟶₂_ → SymClosure _⟶₁_ ⇒ SymClosure _⟶₂_
-
Added new proofs to
Relation.Binary.Lattice.Properties.{Join,Meet}Semilattice
:≈-dec⇒≤-dec : Decidable _≈_ → Decidable _≤_ ≈-dec⇒isDecPartialOrder : Decidable _≈_ → IsDecPartialOrder _≈_ _≤_
-
Added new proofs to
Relation.Binary.Properties.Poset
:≤-dec⇒≈-dec : Decidable _≤_ → Decidable _≈_ ≤-dec⇒isDecPartialOrder : Decidable _≤_ → IsDecPartialOrder _≈_ _≤_
-
Added new proofs in
Relation.Binary.Properties.StrictPartialOrder
:>-strictPartialOrder : StrictPartialOrder s₁ s₂ s₃
-
Added new proofs in
Relation.Binary.PropositionalEquality.Properties
:subst-application′ : subst Q eq (f x p) ≡ f y (subst P eq p) sym-cong : sym (cong f p) ≡ cong f (sym p)
-
Added new proofs in
Relation.Binary.HeterogeneousEquality
:subst₂-removable : subst₂ _∼_ eq₁ eq₂ p ≅ p
-
Added new definitions in
Relation.Unary
:_≐_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ _≐′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ _∖_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
-
Added new proofs in
Relation.Unary.Properties
:⊆-reflexive : _≐_ ⇒ _⊆_ ⊆-antisym : Antisymmetric _≐_ _⊆_ ⊆-min : Min _⊆_ ∅ ⊆-max : Max _⊆_ U ⊂⇒⊆ : _⊂_ ⇒ _⊆_ ⊂-trans : Trans _⊂_ _⊂_ _⊂_ ⊂-⊆-trans : Trans _⊂_ _⊆_ _⊂_ ⊆-⊂-trans : Trans _⊆_ _⊂_ _⊂_ ⊂-respʳ-≐ : _⊂_ Respectsʳ _≐_ ⊂-respˡ-≐ : _⊂_ Respectsˡ _≐_ ⊂-resp-≐ : _⊂_ Respects₂ _≐_ ⊂-irrefl : Irreflexive _≐_ _⊂_ ⊂-antisym : Antisymmetric _≐_ _⊂_ ∅-⊆′ : (P : Pred A ℓ) → ∅ ⊆′ P ⊆′-U : (P : Pred A ℓ) → P ⊆′ U ⊆′-refl : Reflexive {A = Pred A ℓ} _⊆′_ ⊆′-reflexive : _≐′_ ⇒ _⊆′_ ⊆′-trans : Trans _⊆′_ _⊆′_ _⊆′_ ⊆′-antisym : Antisymmetric _≐′_ _⊆′_ ⊆′-min : Min _⊆′_ ∅ ⊆′-max : Max _⊆′_ U ⊂′⇒⊆′ : _⊂′_ ⇒ _⊆′_ ⊂′-trans : Trans _⊂′_ _⊂′_ _⊂′_ ⊂′-⊆′-trans : Trans _⊂′_ _⊆′_ _⊂′_ ⊆′-⊂′-trans : Trans _⊆′_ _⊂′_ _⊂′_ ⊂′-respʳ-≐′ : _⊂′_ Respectsʳ _≐′_ ⊂′-respˡ-≐′ : _⊂′_ Respectsˡ _≐′_ ⊂′-resp-≐′ : _⊂′_ Respects₂ _≐′_ ⊂′-irrefl : Irreflexive _≐′_ _⊂′_ ⊂′-antisym : Antisymmetric _≐′_ _⊂′_ ⊆⇒⊆′ : _⊆_ ⇒ _⊆′_ ⊆′⇒⊆ : _⊆′_ ⇒ _⊆_ ⊂⇒⊂′ : _⊂_ ⇒ _⊂′_ ⊂′⇒⊂ : _⊂′_ ⇒ _⊂_ ≐-refl : Reflexive _≐_ ≐-sym : Sym _≐_ _≐_ ≐-trans : Trans _≐_ _≐_ _≐_ ≐′-refl : Reflexive _≐′_ ≐′-sym : Sym _≐′_ _≐′_ ≐′-trans : Trans _≐′_ _≐′_ _≐′_ ≐⇒≐′ : _≐_ ⇒ _≐′_ ≐′⇒≐ : _≐′_ ⇒ _≐_ U-irrelevant : Irrelevant {A = A} U ∁-irrelevant : (P : Pred A ℓ) → Irrelevant (∁ P)
-
Generalised proofs in
Relation.Unary.Properties
:⊆-trans : Trans _⊆_ _⊆_ _⊆_
-
Added new proofs in
Relation.Binary.Properties.Setoid
:≈-isPreorder : IsPreorder _≈_ _≈_ ≈-isPartialOrder : IsPartialOrder _≈_ _≈_ ≈-preorder : Preorder a ℓ ℓ ≈-poset : Poset a ℓ ℓ
-
Added new definitions in
Relation.Binary.Definitions
:Cotransitive _#_ = ∀ {x y} → x # y → ∀ z → (x # z) ⊎ (z # y) Tight _≈_ _#_ = ∀ x y → (¬ x # y → x ≈ y) × (x ≈ y → ¬ x # y)
-
Added new definitions in
Relation.Binary.Bundles
:record ApartnessRelation c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
-
Added new definitions in
Relation.Binary.Structures
:record IsApartnessRelation (_#_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where
-
Added new proofs to
Relation.Binary.Consequences
:sym⇒¬-sym : Symmetric _∼_ → Symmetric _≁_ cotrans⇒¬-trans : Cotransitive _∼_ → Transitive _≁_ irrefl⇒¬-refl : Reflexive _≈_ → Irreflexive _≈_ _∼_ → Reflexive _≁_
-
Added new operations in
Relation.Binary.PropositionalEquality.Properties
:J : (B : (y : A) → x ≡ y → Set b) (p : x ≡ y) → B x refl → B y p dcong : (p : x ≡ y) → subst B p (f x) ≡ f y dcong₂ : (p : x₁ ≡ x₂) → subst B p y₁ ≡ y₂ → f x₁ y₁ ≡ f x₂ y₂ dsubst₂ : (p : x₁ ≡ x₂) → subst B p y₁ ≡ y₂ → C x₁ y₁ → C x₂ y₂ ddcong₂ : (p : x₁ ≡ x₂) (q : subst B p y₁ ≡ y₂) → dsubst₂ C p q (f x₁ y₁) ≡ f x₂ y₂ isPartialOrder : IsPartialOrder _≡_ _≡_ poset : Set a → Poset _ _ _
-
Added new operations in
System.Exit
:isSuccess : ExitCode → Bool isFailure : ExitCode → Bool
-
Added new functions in
Codata.Guarded.Stream
:transpose : List (Stream A) → Stream (List A) transpose⁺ : List⁺ (Stream A) → Stream (List⁺ A) concat : Stream (List⁺ A) → Stream A
-
Added new proofs in
Codata.Guarded.Stream.Properties
:cong-concat : {ass bss : Stream (List⁺.List⁺ A)} → ass ≈ bss → concat ass ≈ concat bss map-concat : ∀ (f : A → B) ass → map f (concat ass) ≈ concat (map (List⁺.map f) ass) lookup-transpose : ∀ n (ass : List (Stream A)) → lookup n (transpose ass) ≡ List.map (lookup n) ass lookup-transpose⁺ : ∀ n (ass : List⁺ (Stream A)) → lookup n (transpose⁺ ass) ≡ List⁺.map (lookup n) ass
This is a full list of proofs that have changed form to use irrelevant instance arguments:
-
In
Data.Nat.Base
:≢-nonZero⁻¹ : ∀ {n} → .(NonZero n) → n ≢ 0 >-nonZero⁻¹ : ∀ {n} → .(NonZero n) → n > 0
-
In
Data.Nat.Properties
:*-cancelʳ-≡ : ∀ m n {o} → m * suc o ≡ n * suc o → m ≡ n *-cancelˡ-≡ : ∀ {m n} o → suc o * m ≡ suc o * n → m ≡ n *-cancelʳ-≤ : ∀ m n o → m * suc o ≤ n * suc o → m ≤ n *-cancelˡ-≤ : ∀ {m n} o → suc o * m ≤ suc o * n → m ≤ n *-monoˡ-< : ∀ n → (_* suc n) Preserves _<_ ⟶ _<_ *-monoʳ-< : ∀ n → (suc n *_) Preserves _<_ ⟶ _<_ m≤m*n : ∀ m {n} → 0 < n → m ≤ m * n m≤n*m : ∀ m {n} → 0 < n → m ≤ n * m m<m*n : ∀ {m n} → 0 < m → 1 < n → m < m * n suc[pred[n]]≡n : ∀ {n} → n ≢ 0 → suc (pred n) ≡ n
-
In
Data.Nat.Coprimality
:Bézout-coprime : ∀ {i j d} → Bézout.Identity (suc d) (i * suc d) (j * suc d) → Coprime i j
-
In
Data.Nat.Divisibility
m%n≡0⇒n∣m : ∀ m n → m % suc n ≡ 0 → suc n ∣ m n∣m⇒m%n≡0 : ∀ m n → suc n ∣ m → m % suc n ≡ 0 m%n≡0⇔n∣m : ∀ m n → m % suc n ≡ 0 ⇔ suc n ∣ m ∣⇒≤ : ∀ {m n} → m ∣ suc n → m ≤ suc n >⇒∤ : ∀ {m n} → m > suc n → m ∤ suc n *-cancelˡ-∣ : ∀ {i j} k → suc k * i ∣ suc k * j → i ∣ j
-
In
Data.Nat.DivMod
:m≡m%n+[m/n]*n : ∀ m n → m ≡ m % suc n + (m / suc n) * suc n m%n≡m∸m/n*n : ∀ m n → m % suc n ≡ m ∸ (m / suc n) * suc n n%n≡0 : ∀ n → suc n % suc n ≡ 0 m%n%n≡m%n : ∀ m n → m % suc n % suc n ≡ m % suc n [m+n]%n≡m%n : ∀ m n → (m + suc n) % suc n ≡ m % suc n [m+kn]%n≡m%n : ∀ m k n → (m + k * (suc n)) % suc n ≡ m % suc n m*n%n≡0 : ∀ m n → (m * suc n) % suc n ≡ 0 m%n<n : ∀ m n → m % suc n < suc n m%n≤m : ∀ m n → m % suc n ≤ m m≤n⇒m%n≡m : ∀ {m n} → m ≤ n → m % suc n ≡ m m/n<m : ∀ m n {≢0} → m ≥ 1 → n ≥ 2 → (m / n) {≢0} < m
-
In
Data.Nat.GCD
GCD-* : ∀ {m n d c} → GCD (m * suc c) (n * suc c) (d * suc c) → GCD m n d gcd[m,n]≤n : ∀ m n → gcd m (suc n) ≤ suc n
-
In
Data.Integer.Properties
:positive⁻¹ : ∀ {i} → Positive i → i > 0ℤ negative⁻¹ : ∀ {i} → Negative i → i < 0ℤ nonPositive⁻¹ : ∀ {i} → NonPositive i → i ≤ 0ℤ nonNegative⁻¹ : ∀ {i} → NonNegative i → i ≥ 0ℤ negative<positive : ∀ {i j} → Negative i → Positive j → i < j sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s sign-cong : ∀ {s₁ s₂ n₁ n₂} → s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂ -◃<+◃ : ∀ m n → Sign.- ◃ (suc m) < Sign.+ ◃ n m⊖1+n<m : ∀ m n → m ⊖ suc n < + m *-cancelʳ-≡ : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j *-cancelˡ-≡ : ∀ i j k → i ≢ + 0 → i * j ≡ i * k → j ≡ k *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n ≤-steps : ∀ n → i ≤ j → i ≤ + n + j ≤-steps-neg : ∀ n → i ≤ j → i - + n ≤ j n≤m+n : ∀ n → i ≤ + n + i m≤m+n : ∀ n → i ≤ i + + n m-n≤m : ∀ i n → i - + n ≤ i *-cancelʳ-≤-pos : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n *-cancelˡ-≤-pos : ∀ m j k → + suc m * j ≤ + suc m * k → j ≤ k *-cancelˡ-≤-neg : ∀ m {j k} → -[1+ m ] * j ≤ -[1+ m ] * k → j ≥ k *-cancelʳ-≤-neg : ∀ {n o} m → n * -[1+ m ] ≤ o * -[1+ m ] → n ≥ o *-cancelˡ-<-nonNeg : ∀ n → + n * i < + n * j → i < j *-cancelʳ-<-nonNeg : ∀ n → i * + n < j * + n → i < j *-monoʳ-≤-nonNeg : ∀ n → (_* + n) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonNeg : ∀ n → (+ n *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonPos : ∀ i → NonPositive i → (i *_) Preserves _≤_ ⟶ _≥_ *-monoʳ-≤-nonPos : ∀ i → NonPositive i → (_* i) Preserves _≤_ ⟶ _≥_ *-monoˡ-<-pos : ∀ n → (+[1+ n ] *_) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos : ∀ n → (_* +[1+ n ]) Preserves _<_ ⟶ _<_ *-monoˡ-<-neg : ∀ n → (-[1+ n ] *_) Preserves _<_ ⟶ _>_ *-monoʳ-<-neg : ∀ n → (_* -[1+ n ]) Preserves _<_ ⟶ _>_ *-cancelˡ-<-nonPos : ∀ n → NonPositive n → n * i < n * j → i > j *-cancelʳ-<-nonPos : ∀ n → NonPositive n → i * n < j * n → i > j *-distribˡ-⊓-nonNeg : ∀ m j k → + m * (j ⊓ k) ≡ (+ m * j) ⊓ (+ m * k) *-distribʳ-⊓-nonNeg : ∀ m j k → (j ⊓ k) * + m ≡ (j * + m) ⊓ (k * + m) *-distribˡ-⊓-nonPos : ∀ i → NonPositive i → ∀ j k → i * (j ⊓ k) ≡ (i * j) ⊔ (i * k) *-distribʳ-⊓-nonPos : ∀ i → NonPositive i → ∀ j k → (j ⊓ k) * i ≡ (j * i) ⊔ (k * i) *-distribˡ-⊔-nonNeg : ∀ m j k → + m * (j ⊔ k) ≡ (+ m * j) ⊔ (+ m * k) *-distribʳ-⊔-nonNeg : ∀ m j k → (j ⊔ k) * + m ≡ (j * + m) ⊔ (k * + m) *-distribˡ-⊔-nonPos : ∀ i → NonPositive i → ∀ j k → i * (j ⊔ k) ≡ (i * j) ⊓ (i * k) *-distribʳ-⊔-nonPos : ∀ i → NonPositive i → ∀ j k → (j ⊔ k) * i ≡ (j * i) ⊓ (k * i)
-
In
Data.Integer.Divisibility
:*-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
-
In
Data.Integer.Divisibility.Signed
:*-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
-
In
Data.Rational.Unnormalised.Properties
:positive⁻¹ : ∀ {q} → .(Positive q) → q > 0ℚᵘ nonNegative⁻¹ : ∀ {q} → .(NonNegative q) → q ≥ 0ℚᵘ negative⁻¹ : ∀ {q} → .(Negative q) → q < 0ℚᵘ nonPositive⁻¹ : ∀ {q} → .(NonPositive q) → q ≤ 0ℚᵘ positive⇒nonNegative : ∀ {p} → Positive p → NonNegative p negative⇒nonPositive : ∀ {p} → Negative p → NonPositive p negative<positive : ∀ {p q} → .(Negative p) → .(Positive q) → p < q nonNeg∧nonPos⇒0 : ∀ {p} → .(NonNegative p) → .(NonPositive p) → p ≃ 0ℚᵘ ≤-steps : ∀ {p q r} → NonNegative r → p ≤ q → p ≤ r + q p≤p+q : ∀ {p q} → NonNegative q → p ≤ p + q p≤q+p : ∀ {p} → NonNegative p → ∀ {q} → q ≤ p + q *-cancelʳ-≤-pos : ∀ {r} → Positive r → ∀ {p q} → p * r ≤ q * r → p ≤ q *-cancelˡ-≤-pos : ∀ {r} → Positive r → ∀ {p q} → r * p ≤ r * q → p ≤ q *-cancelʳ-≤-neg : ∀ r → Negative r → ∀ {p q} → p * r ≤ q * r → q ≤ p *-cancelˡ-≤-neg : ∀ r → Negative r → ∀ {p q} → r * p ≤ r * q → q ≤ p *-cancelˡ-<-nonNeg : ∀ {r} → NonNegative r → ∀ {p q} → r * p < r * q → p < q *-cancelʳ-<-nonNeg : ∀ {r} → NonNegative r → ∀ {p q} → p * r < q * r → p < q *-cancelˡ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → r * p < r * q → q < p *-cancelʳ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → p * r < q * r → q < p *-monoˡ-≤-nonNeg : ∀ {r} → NonNegative r → (_* r) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-nonNeg : ∀ {r} → NonNegative r → (r *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonPos : ∀ r → NonPositive r → (_* r) Preserves _≤_ ⟶ _≥_ *-monoʳ-≤-nonPos : ∀ r → NonPositive r → (r *_) Preserves _≤_ ⟶ _≥_ *-monoˡ-<-pos : ∀ {r} → Positive r → (_* r) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos : ∀ {r} → Positive r → (r *_) Preserves _<_ ⟶ _<_ *-monoˡ-<-neg : ∀ r → Negative r → (_* r) Preserves _<_ ⟶ _>_ *-monoʳ-<-neg : ∀ r → Negative r → (r *_) Preserves _<_ ⟶ _>_ pos⇒1/pos : ∀ p (p>0 : Positive p) → Positive ((1/ p) {{pos⇒≢0 p p>0}}) neg⇒1/neg : ∀ p (p<0 : Negative p) → Negative ((1/ p) {{neg⇒≢0 p p<0}}) *-distribʳ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊓ r) * p ≃ (q * p) ⊓ (r * p) *-distribˡ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊓ r) ≃ (p * q) ⊓ (p * r) *-distribˡ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊔ r) ≃ (p * q) ⊔ (p * r) *-distribʳ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊔ r) * p ≃ (q * p) ⊔ (r * p) *-distribˡ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊔ r) ≃ (p * q) ⊓ (p * r) *-distribʳ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊔ r) * p ≃ (q * p) ⊓ (r * p) *-distribˡ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊓ r) ≃ (p * q) ⊔ (p * r) *-distribʳ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊓ r) * p ≃ (q * p) ⊔ (r * p)
-
In
Data.Rational.Properties
:positive⁻¹ : Positive p → p > 0ℚ nonNegative⁻¹ : NonNegative p → p ≥ 0ℚ negative⁻¹ : Negative p → p < 0ℚ nonPositive⁻¹ : NonPositive p → p ≤ 0ℚ negative<positive : Negative p → Positive q → p < q nonNeg≢neg : ∀ p q → NonNegative p → Negative q → p ≢ q pos⇒nonNeg : ∀ p → Positive p → NonNegative p neg⇒nonPos : ∀ p → Negative p → NonPositive p nonNeg∧nonZero⇒pos : ∀ p → NonNegative p → NonZero p → Positive p *-cancelʳ-≤-pos : ∀ r → Positive r → ∀ {p q} → p * r ≤ q * r → p ≤ q *-cancelˡ-≤-pos : ∀ r → Positive r → ∀ {p q} → r * p ≤ r * q → p ≤ q *-cancelʳ-≤-neg : ∀ r → Negative r → ∀ {p q} → p * r ≤ q * r → p ≥ q *-cancelˡ-≤-neg : ∀ r → Negative r → ∀ {p q} → r * p ≤ r * q → p ≥ q *-cancelˡ-<-nonNeg : ∀ r → NonNegative r → ∀ {p q} → r * p < r * q → p < q *-cancelʳ-<-nonNeg : ∀ r → NonNegative r → ∀ {p q} → p * r < q * r → p < q *-cancelˡ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → r * p < r * q → p > q *-cancelʳ-<-nonPos : ∀ r → NonPositive r → ∀ {p q} → p * r < q * r → p > q *-monoʳ-≤-nonNeg : ∀ r → NonNegative r → (_* r) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-nonNeg : ∀ r → NonNegative r → (r *_) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-nonPos : ∀ r → NonPositive r → (_* r) Preserves _≤_ ⟶ _≥_ *-monoˡ-≤-nonPos : ∀ r → NonPositive r → (r *_) Preserves _≤_ ⟶ _≥_ *-monoˡ-<-pos : ∀ r → Positive r → (_* r) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos : ∀ r → Positive r → (r *_) Preserves _<_ ⟶ _<_ *-monoˡ-<-neg : ∀ r → Negative r → (_* r) Preserves _<_ ⟶ _>_ *-monoʳ-<-neg : ∀ r → Negative r → (r *_) Preserves _<_ ⟶ _>_ *-distribˡ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊓ (p * r) *-distribʳ-⊓-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊓ (r * p) *-distribˡ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊔ (p * r) *-distribʳ-⊔-nonNeg : ∀ p → NonNegative p → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊔ (r * p) *-distribˡ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊓ (p * r) *-distribʳ-⊔-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊓ (r * p) *-distribˡ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊔ (p * r) *-distribʳ-⊓-nonPos : ∀ p → NonPositive p → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊔ (r * p) pos⇒1/pos : ∀ p (p>0 : Positive p) → Positive ((1/ p) {{pos⇒≢0 p p>0}}) neg⇒1/neg : ∀ p (p<0 : Negative p) → Negative ((1/ p) {{neg⇒≢0 p p<0}}) 1/pos⇒pos : ∀ p .{{_ : NonZero p}} → (1/p : Positive (1/ p)) → Positive p 1/neg⇒neg : ∀ p .{{_ : NonZero p}} → (1/p : Negative (1/ p)) → Negative p
-
In
Data.List.NonEmpty.Base
:drop+ : ℕ → List⁺ A → List⁺ A
When drop+ping more than the size of the length of the list, the last element remains.
-
Added new proofs in
Data.List.NonEmpty.Properties
:length-++⁺ : length (xs ++⁺ ys) ≡ length xs + length ys length-++⁺-tail : length (xs ++⁺ ys) ≡ suc (length xs + length (tail ys)) ++-++⁺ : (xs ++ ys) ++⁺ zs ≡ xs ++⁺ ys ++⁺ zs ++⁺-cancelˡ′ : xs ++⁺ zs ≡ ys ++⁺ zs′ → List.length xs ≡ List.length ys → zs ≡ zs′ ++⁺-cancelˡ : xs ++⁺ ys ≡ xs ++⁺ zs → ys ≡ zs drop+-++⁺ : drop+ (length xs) (xs ++⁺ ys) ≡ ys map-++⁺-commute : map f (xs ++⁺ ys) ≡ map f xs ++⁺ map f ys length-map : length (map f xs) ≡ length xs map-cong : f ≗ g → map f ≗ map g map-compose : map (g ∘ f) ≗ map g ∘ map f
-
Added new functions and proofs in
Data.Nat.GeneralisedArithmetic
:iterate : (A → A) → A → ℕ → A iterate-is-fold : ∀ (z : A) s m → fold z s m ≡ iterate s z m
-
Added new proofs to
Function.Properties.Inverse
:Inverse⇒Injection : Inverse S T → Injection S T ↔⇒↣ : A ↔ B → A ↣ B