forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq2seq_attention_model.py
300 lines (261 loc) · 12.8 KB
/
seq2seq_attention_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sequence-to-Sequence with attention model for text summarization.
"""
from collections import namedtuple
import numpy as np
import tensorflow as tf
import seq2seq_lib
HParams = namedtuple('HParams',
'mode, min_lr, lr, batch_size, '
'enc_layers, enc_timesteps, dec_timesteps, '
'min_input_len, num_hidden, emb_dim, max_grad_norm, '
'num_softmax_samples')
def _extract_argmax_and_embed(embedding, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
"""function that feed previous model output rather than ground truth."""
if output_projection is not None:
prev = tf.nn.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = tf.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = tf.nn.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = tf.stop_gradient(emb_prev)
return emb_prev
return loop_function
class Seq2SeqAttentionModel(object):
"""Wrapper for Tensorflow model graph for text sum vectors."""
def __init__(self, hps, vocab, num_gpus=0):
self._hps = hps
self._vocab = vocab
self._num_gpus = num_gpus
self._cur_gpu = 0
def run_train_step(self, sess, article_batch, abstract_batch, targets,
article_lens, abstract_lens, loss_weights):
to_return = [self._train_op, self._summaries, self._loss, self.global_step]
return sess.run(to_return,
feed_dict={self._articles: article_batch,
self._abstracts: abstract_batch,
self._targets: targets,
self._article_lens: article_lens,
self._abstract_lens: abstract_lens,
self._loss_weights: loss_weights})
def run_eval_step(self, sess, article_batch, abstract_batch, targets,
article_lens, abstract_lens, loss_weights):
to_return = [self._summaries, self._loss, self.global_step]
return sess.run(to_return,
feed_dict={self._articles: article_batch,
self._abstracts: abstract_batch,
self._targets: targets,
self._article_lens: article_lens,
self._abstract_lens: abstract_lens,
self._loss_weights: loss_weights})
def run_decode_step(self, sess, article_batch, abstract_batch, targets,
article_lens, abstract_lens, loss_weights):
to_return = [self._outputs, self.global_step]
return sess.run(to_return,
feed_dict={self._articles: article_batch,
self._abstracts: abstract_batch,
self._targets: targets,
self._article_lens: article_lens,
self._abstract_lens: abstract_lens,
self._loss_weights: loss_weights})
def _next_device(self):
"""Round robin the gpu device. (Reserve last gpu for expensive op)."""
if self._num_gpus == 0:
return ''
dev = '/gpu:%d' % self._cur_gpu
if self._num_gpus > 1:
self._cur_gpu = (self._cur_gpu + 1) % (self._num_gpus-1)
return dev
def _get_gpu(self, gpu_id):
if self._num_gpus <= 0 or gpu_id >= self._num_gpus:
return ''
return '/gpu:%d' % gpu_id
def _add_placeholders(self):
"""Inputs to be fed to the graph."""
hps = self._hps
self._articles = tf.placeholder(tf.int32,
[hps.batch_size, hps.enc_timesteps],
name='articles')
self._abstracts = tf.placeholder(tf.int32,
[hps.batch_size, hps.dec_timesteps],
name='abstracts')
self._targets = tf.placeholder(tf.int32,
[hps.batch_size, hps.dec_timesteps],
name='targets')
self._article_lens = tf.placeholder(tf.int32, [hps.batch_size],
name='article_lens')
self._abstract_lens = tf.placeholder(tf.int32, [hps.batch_size],
name='abstract_lens')
self._loss_weights = tf.placeholder(tf.float32,
[hps.batch_size, hps.dec_timesteps],
name='loss_weights')
def _add_seq2seq(self):
hps = self._hps
vsize = self._vocab.NumIds()
with tf.variable_scope('seq2seq'):
encoder_inputs = tf.unstack(tf.transpose(self._articles))
decoder_inputs = tf.unstack(tf.transpose(self._abstracts))
targets = tf.unstack(tf.transpose(self._targets))
loss_weights = tf.unstack(tf.transpose(self._loss_weights))
article_lens = self._article_lens
# Embedding shared by the input and outputs.
with tf.variable_scope('embedding'), tf.device('/cpu:0'):
embedding = tf.get_variable(
'embedding', [vsize, hps.emb_dim], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=1e-4))
emb_encoder_inputs = [tf.nn.embedding_lookup(embedding, x)
for x in encoder_inputs]
emb_decoder_inputs = [tf.nn.embedding_lookup(embedding, x)
for x in decoder_inputs]
for layer_i in xrange(hps.enc_layers):
with tf.variable_scope('encoder%d'%layer_i), tf.device(
self._next_device()):
cell_fw = tf.contrib.rnn.LSTMCell(
hps.num_hidden,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=123),
state_is_tuple=False)
cell_bw = tf.contrib.rnn.LSTMCell(
hps.num_hidden,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
state_is_tuple=False)
(emb_encoder_inputs, fw_state, _) = tf.contrib.rnn.static_bidirectional_rnn(
cell_fw, cell_bw, emb_encoder_inputs, dtype=tf.float32,
sequence_length=article_lens)
encoder_outputs = emb_encoder_inputs
with tf.variable_scope('output_projection'):
w = tf.get_variable(
'w', [hps.num_hidden, vsize], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=1e-4))
w_t = tf.transpose(w)
v = tf.get_variable(
'v', [vsize], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=1e-4))
with tf.variable_scope('decoder'), tf.device(self._next_device()):
# When decoding, use model output from the previous step
# for the next step.
loop_function = None
if hps.mode == 'decode':
loop_function = _extract_argmax_and_embed(
embedding, (w, v), update_embedding=False)
cell = tf.contrib.rnn.LSTMCell(
hps.num_hidden,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
state_is_tuple=False)
encoder_outputs = [tf.reshape(x, [hps.batch_size, 1, 2*hps.num_hidden])
for x in encoder_outputs]
self._enc_top_states = tf.concat(axis=1, values=encoder_outputs)
self._dec_in_state = fw_state
# During decoding, follow up _dec_in_state are fed from beam_search.
# dec_out_state are stored by beam_search for next step feeding.
initial_state_attention = (hps.mode == 'decode')
decoder_outputs, self._dec_out_state = tf.contrib.legacy_seq2seq.attention_decoder(
emb_decoder_inputs, self._dec_in_state, self._enc_top_states,
cell, num_heads=1, loop_function=loop_function,
initial_state_attention=initial_state_attention)
with tf.variable_scope('output'), tf.device(self._next_device()):
model_outputs = []
for i in xrange(len(decoder_outputs)):
if i > 0:
tf.get_variable_scope().reuse_variables()
model_outputs.append(
tf.nn.xw_plus_b(decoder_outputs[i], w, v))
if hps.mode == 'decode':
with tf.variable_scope('decode_output'), tf.device('/cpu:0'):
best_outputs = [tf.argmax(x, 1) for x in model_outputs]
tf.logging.info('best_outputs%s', best_outputs[0].get_shape())
self._outputs = tf.concat(
axis=1, values=[tf.reshape(x, [hps.batch_size, 1]) for x in best_outputs])
self._topk_log_probs, self._topk_ids = tf.nn.top_k(
tf.log(tf.nn.softmax(model_outputs[-1])), hps.batch_size*2)
with tf.variable_scope('loss'), tf.device(self._next_device()):
def sampled_loss_func(inputs, labels):
with tf.device('/cpu:0'): # Try gpu.
labels = tf.reshape(labels, [-1, 1])
return tf.nn.sampled_softmax_loss(
weights=w_t, biases=v, labels=labels, inputs=inputs,
num_sampled=hps.num_softmax_samples, num_classes=vsize)
if hps.num_softmax_samples != 0 and hps.mode == 'train':
self._loss = seq2seq_lib.sampled_sequence_loss(
decoder_outputs, targets, loss_weights, sampled_loss_func)
else:
self._loss = tf.contrib.legacy_seq2seq.sequence_loss(
model_outputs, targets, loss_weights)
tf.summary.scalar('loss', tf.minimum(12.0, self._loss))
def _add_train_op(self):
"""Sets self._train_op, op to run for training."""
hps = self._hps
self._lr_rate = tf.maximum(
hps.min_lr, # min_lr_rate.
tf.train.exponential_decay(hps.lr, self.global_step, 30000, 0.98))
tvars = tf.trainable_variables()
with tf.device(self._get_gpu(self._num_gpus-1)):
grads, global_norm = tf.clip_by_global_norm(
tf.gradients(self._loss, tvars), hps.max_grad_norm)
tf.summary.scalar('global_norm', global_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr_rate)
tf.summary.scalar('learning rate', self._lr_rate)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self.global_step, name='train_step')
def encode_top_state(self, sess, enc_inputs, enc_len):
"""Return the top states from encoder for decoder.
Args:
sess: tensorflow session.
enc_inputs: encoder inputs of shape [batch_size, enc_timesteps].
enc_len: encoder input length of shape [batch_size]
Returns:
enc_top_states: The top level encoder states.
dec_in_state: The decoder layer initial state.
"""
results = sess.run([self._enc_top_states, self._dec_in_state],
feed_dict={self._articles: enc_inputs,
self._article_lens: enc_len})
return results[0], results[1][0]
def decode_topk(self, sess, latest_tokens, enc_top_states, dec_init_states):
"""Return the topK results and new decoder states."""
feed = {
self._enc_top_states: enc_top_states,
self._dec_in_state:
np.squeeze(np.array(dec_init_states)),
self._abstracts:
np.transpose(np.array([latest_tokens])),
self._abstract_lens: np.ones([len(dec_init_states)], np.int32)}
results = sess.run(
[self._topk_ids, self._topk_log_probs, self._dec_out_state],
feed_dict=feed)
ids, probs, states = results[0], results[1], results[2]
new_states = [s for s in states]
return ids, probs, new_states
def build_graph(self):
self._add_placeholders()
self._add_seq2seq()
self.global_step = tf.Variable(0, name='global_step', trainable=False)
if self._hps.mode == 'train':
self._add_train_op()
self._summaries = tf.summary.merge_all()