diff --git a/tokengrams/tokengrams.pyi b/tokengrams/tokengrams.pyi index 6f32ffd..3b34edc 100644 --- a/tokengrams/tokengrams.pyi +++ b/tokengrams/tokengrams.pyi @@ -36,10 +36,10 @@ class InMemoryIndex: def batch_count_next(self, queries: list[list[int]]) -> list[list[int]]: """Count the occurrences of each token that directly follows each sequence in `queries`.""" - def smoothed_probs(self, query: list[int]) -> list[float]: + def get_smoothed_probs(self, query: list[int]) -> list[float]: """Compute interpolated Kneser-Ney smoothed token probability distribution using all previous tokens in the query.""" - def batch_smoothed_probs(self, queries: list[list[int]]) -> list[list[float]]: + def batch_get_smoothed_probs(self, queries: list[list[int]]) -> list[list[float]]: """Compute interpolated Kneser-Ney smoothed token probability distributions using all previous tokens in each query.""" def sample_smoothed(self, query: list[int], n: int, k: int, num_samples: int) -> list[list[int]]: @@ -97,10 +97,10 @@ class MemmapIndex: on the previous (n - 1) characters (n-gram prefix) in the sequence. If there are fewer than (n - 1) characters all available characters are used.""" - def smoothed_probs(self, query: list[int]) -> list[float]: + def get_smoothed_probs(self, query: list[int]) -> list[float]: """Compute interpolated Kneser-Ney smoothed token probability distribution using all previous tokens in the query.""" - def batch_smoothed_probs(self, queries: list[list[int]]) -> list[list[float]]: + def batch_get_smoothed_probs(self, queries: list[list[int]]) -> list[list[float]]: """Compute interpolated Kneser-Ney smoothed token probability distributions using all previous tokens in each query.""" def estimate_deltas(self, n: int): @@ -145,10 +145,10 @@ class ShardedMemmapIndex: on the previous (n - 1) characters (n-gram prefix) in the sequence. If there are fewer than (n - 1) characters all available characters are used.""" - def smoothed_probs(self, query: list[int]) -> list[float]: + def get_smoothed_probs(self, query: list[int]) -> list[float]: """Compute interpolated Kneser-Ney smoothed token probability distribution using all previous tokens in the query.""" - def batch_smoothed_probs(self, queries: list[list[int]]) -> list[list[float]]: + def batch_get_smoothed_probs(self, queries: list[list[int]]) -> list[list[float]]: """Compute interpolated Kneser-Ney smoothed token probability distributions using all previous tokens in each query.""" def estimate_deltas(self, n: int):