-
Notifications
You must be signed in to change notification settings - Fork 40
/
blobs_detection.py
393 lines (335 loc) · 14.6 KB
/
blobs_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from __future__ import division
import numpy as np
from scipy.ndimage import gaussian_filter, gaussian_laplace
import math
from math import sqrt, log
from scipy import spatial
from skimage.util import img_as_float
from skimage.feature.peak import peak_local_max
# code from
# https://github.com/emmanuelle/scikit-image/blob/0228772de6f55a053f350665dd3128b1a0193b98/skimage/feature/blob.py
# This basic blob detection algorithm is based on:
# http://www.cs.utah.edu/~jfishbau/advimproc/project1/ (04.04.2013)
# Theory behind: http://en.wikipedia.org/wiki/Blob_detection (04.04.2013)
def _compute_disk_overlap(d, r1, r2):
"""
Compute surface overlap between two disks of radii ``r1`` and ``r2``,
with centers separated by a distance ``d``.
Parameters
----------
d : float
Distance between centers.
r1 : float
Radius of the first disk.
r2 : float
Radius of the second disk.
Returns
-------
vol: float
Volume of the overlap between the two disks.
"""
ratio1 = (d ** 2 + r1 ** 2 - r2 ** 2) / (2 * d * r1)
ratio1 = np.clip(ratio1, -1, 1)
acos1 = math.acos(ratio1)
ratio2 = (d ** 2 + r2 ** 2 - r1 ** 2) / (2 * d * r2)
ratio2 = np.clip(ratio2, -1, 1)
acos2 = math.acos(ratio2)
a = -d + r2 + r1
b = d - r2 + r1
c = d + r2 - r1
d = d + r2 + r1
area = (r1 ** 2 * acos1 + r2 ** 2 * acos2 -
0.5 * sqrt(abs(a * b * c * d)))
return area / (math.pi * (min(r1, r2) ** 2))
def _compute_sphere_overlap(d, r1, r2):
"""
Compute volume overlap between two spheres of radii ``r1`` and ``r2``,
with centers separated by a distance ``d``.
Parameters
----------
d : float
Distance between centers.
r1 : float
Radius of the first sphere.
r2 : float
Radius of the second sphere.
Returns
-------
vol: float
Volume of the overlap between the two spheres.
Notes
-----
See for example http://mathworld.wolfram.com/Sphere-SphereIntersection.html
for more details.
"""
vol = (math.pi / (12 * d) * (r1 + r2 - d) ** 2 *
(d ** 2 + 2 * d * (r1 + r2) - 3 * (r1 ** 2 + r2 ** 2) + 6 * r1 * r2))
return vol / (4. / 3 * math.pi * min(r1, r2) ** 3)
def _blob_overlap(blob1, blob2):
"""Finds the overlapping area fraction between two blobs.
Returns a float representing fraction of overlapped area.
Parameters
----------
blob1 : sequence of arrays
A sequence of ``(row, col, sigma)`` or ``(pln, row, col, sigma)``,
where ``row, col`` (or ``(pln, row, col, sigma)``) are coordinates
of blob and ``sigma`` is the standard deviation of the Gaussian kernel
which detected the blob.
blob2 : sequence of arrays
A sequence of ``(row, col, sigma)`` or ``(pln, row, col, sigma)``,
where ``row, col`` (or ``(pln, row, col, sigma)``) are coordinates
of blob and ``sigma`` is the standard deviation of the Gaussian kernel
which detected the blob.
Returns
-------
f : float
Fraction of overlapped area (or volume in 3D).
"""
n_dim = len(blob1) - 1
root_ndim = sqrt(n_dim)
# extent of the blob is given by sqrt(2)*scale
r1 = blob1[-1] * root_ndim
r2 = blob2[-1] * root_ndim
d = sqrt(np.sum((blob1[:-1] - blob2[:-1]) ** 2))
if d > r1 + r2:
return 0
# one blob is inside the other, the smaller blob must die
if d <= abs(r1 - r2):
return 1
if n_dim == 2:
return _compute_disk_overlap(d, r1, r2)
else: # http://mathworld.wolfram.com/Sphere-SphereIntersection.html
return _compute_sphere_overlap(d, r1, r2)
def _prune_blobs(blobs_array, overlap):
"""Eliminated blobs with area overlap.
Parameters
----------
blobs_array : ndarray
A 2d array with each row representing 3 (or 4) values,
``(row, col, sigma)`` or ``(pln, row, col, sigma)`` in 3D,
where ``(row, col)`` (``(pln, row, col)``) are coordinates of the blob
and ``sigma`` is the standard deviation of the Gaussian kernel which
detected the blob.
overlap : float
A value between 0 and 1. If the fraction of area overlapping for 2
blobs is greater than `overlap` the smaller blob is eliminated.
Returns
-------
A : ndarray
`array` with overlapping blobs removed.
"""
# iterating again might eliminate more blobs, but one iteration suffices
# for most cases
if len(blobs_array) == 0:
return np.array([])
sigma = blobs_array[:, -1].max()
distance = 2 * sigma * sqrt(blobs_array.shape[1] - 1)
try:
tree = spatial.cKDTree(blobs_array[:, :-1])
pairs = np.array(list(tree.query_pairs(distance)))
except AttributeError: # scipy 0.9, min requirements
tree = spatial.KDTree(blobs_array[:, :-1])
pairs = np.array(list(tree.query_pairs(distance)))
if len(pairs) == 0:
return blobs_array
else:
for (i, j) in pairs:
blob1, blob2 = blobs_array[i], blobs_array[j]
if _blob_overlap(blob1, blob2) > overlap:
if blob1[-1] > blob2[-1]:
blob2[-1] = 0
else:
blob1[-1] = 0
return np.array([b for b in blobs_array if b[-1] > 0])
def blob_dog(image, min_sigma=1, max_sigma=50, sigma_ratio=1.6, threshold=2.0,
overlap=.5, ):
"""Finds blobs in the given grayscale image.
Blobs are found using the Difference of Gaussian (DoG) method [1]_.
For each blob found, the method returns its coordinates and the standard
deviation of the Gaussian kernel that detected the blob.
Parameters
----------
image : 2D or 3D ndarray
Input grayscale image, blobs are assumed to be light on dark
background (white on black).
min_sigma : float, optional
The minimum standard deviation for Gaussian Kernel. Keep this low to
detect smaller blobs.
max_sigma : float, optional
The maximum standard deviation for Gaussian Kernel. Keep this high to
detect larger blobs.
sigma_ratio : float, optional
The ratio between the standard deviation of Gaussian Kernels used for
computing the Difference of Gaussians
threshold : float, optional.
The absolute lower bound for scale space maxima. Local maxima smaller
than thresh are ignored. Reduce this to detect blobs with less
intensities.
overlap : float, optional
A value between 0 and 1. If the area of two blobs overlaps by a
fraction greater than `threshold`, the smaller blob is eliminated.
Returns
-------
A : (n, image.ndim + 1) ndarray
A 2d array with each row representing 3 values for a 2D image,
and 4 values for a 3D image: ``(r, c, sigma)`` or ``(p, r, c, sigma)``
where ``(r, c)`` or ``(p, r, c)`` are coordinates of the blob and
``sigma`` is the standard deviation of the Gaussian kernel which
detected the blob.
References
----------
.. [1] http://en.wikipedia.org/wiki/Blob_detection#The_difference_of_Gaussians_approach
Examples
--------
>>> from skimage import data, feature
>>> feature.blob_dog(data.coins(), threshold=.5, max_sigma=40)
array([[ 45. , 336. , 16.777216],
[ 52. , 155. , 16.777216],
[ 52. , 216. , 16.777216],
[ 54. , 42. , 16.777216],
[ 54. , 276. , 10.48576 ],
[ 58. , 100. , 10.48576 ],
[ 120. , 272. , 16.777216],
[ 124. , 337. , 10.48576 ],
[ 125. , 45. , 16.777216],
[ 125. , 208. , 10.48576 ],
[ 127. , 102. , 10.48576 ],
[ 128. , 154. , 10.48576 ],
[ 185. , 347. , 16.777216],
[ 193. , 213. , 16.777216],
[ 194. , 277. , 16.777216],
[ 195. , 102. , 16.777216],
[ 196. , 43. , 10.48576 ],
[ 198. , 155. , 10.48576 ],
[ 260. , 46. , 16.777216],
[ 261. , 173. , 16.777216],
[ 263. , 245. , 16.777216],
[ 263. , 302. , 16.777216],
[ 267. , 115. , 10.48576 ],
[ 267. , 359. , 16.777216]])
Notes
-----
The radius of each blob is approximately :math:`\sqrt{2}sigma` for
a 2-D image and :math:`\sqrt{3}sigma` for a 3-D image.
"""
image = img_as_float(image)
# k such that min_sigma*(sigma_ratio**k) > max_sigma
k = int(log(float(max_sigma) / min_sigma, sigma_ratio)) + 1
# a geometric progression of standard deviations for gaussian kernels
sigma_list = np.array([min_sigma * (sigma_ratio ** i)
for i in range(k + 1)])
gaussian_images = [gaussian_filter(image, s) for s in sigma_list]
# computing difference between two successive Gaussian blurred images
# multiplying with standard deviation provides scale invariance
dog_images = [(gaussian_images[i] - gaussian_images[i + 1])
* sigma_list[i] for i in range(k)]
# Replace by image_cube = np.stack(hessian_images, axis=-1)
# When we upgrade minimal requirements to NumPy 1.10
sl = (slice(None),) * image.ndim + (np.newaxis,)
arrays = [np.asanyarray(arr) for arr in dog_images]
extended_arrays = [arr[sl] for arr in arrays]
image_cube = np.concatenate(extended_arrays, axis=-1)
# local_maxima = get_local_maxima(image_cube, threshold)
local_maxima = peak_local_max(image_cube, threshold_abs=threshold,
footprint=np.ones((3,) * (image.ndim + 1)),
threshold_rel=0.0,
exclude_border=False)
# Convert local_maxima to float64
lm = local_maxima.astype(np.float64)
# Convert the last index to its corresponding scale value
lm[:, -1] = sigma_list[local_maxima[:, -1]]
return _prune_blobs(lm, overlap)
def blob_log(image, min_sigma=1, max_sigma=50, num_sigma=10, threshold=.2,
overlap=.5, log_scale=False):
"""Finds blobs in the given grayscale image.
Blobs are found using the Laplacian of Gaussian (LoG) method [1]_.
For each blob found, the method returns its coordinates and the standard
deviation of the Gaussian kernel that detected the blob.
Parameters
----------
image : 2D or 3D ndarray
Input grayscale image, blobs are assumed to be light on dark
background (white on black).
min_sigma : float, optional
The minimum standard deviation for Gaussian Kernel. Keep this low to
detect smaller blobs.
max_sigma : float, optional
The maximum standard deviation for Gaussian Kernel. Keep this high to
detect larger blobs.
num_sigma : int, optional
The number of intermediate values of standard deviations to consider
between `min_sigma` and `max_sigma`.
threshold : float, optional.
The absolute lower bound for scale space maxima. Local maxima smaller
than thresh are ignored. Reduce this to detect blobs with less
intensities.
overlap : float, optional
A value between 0 and 1. If the area of two blobs overlaps by a
fraction greater than `threshold`, the smaller blob is eliminated.
log_scale : bool, optional
If set intermediate values of standard deviations are interpolated
using a logarithmic scale to the base `10`. If not, linear
interpolation is used.
Returns
-------
A : (n, image.ndim + 1) ndarray
A 2d array with each row representing 3 values for a 2D image,
and 4 values for a 3D image: ``(r, c, sigma)`` or ``(f, r, c, sigma)``
where ``(r, c)`` or ``(f, r, c)`` are coordinates of the blob and
``sigma`` is the standard deviation of the Gaussian kernel which
detected the blob.
References
----------
.. [1] http://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian
Examples
--------
>>> from skimage import data, feature, exposure
>>> img = data.coins()
>>> img = exposure.equalize_hist(img) # improves detection
>>> feature.blob_log(img, threshold = .3)
array([[ 113. , 323. , 1. ],
[ 121. , 272. , 17.33333333],
[ 124. , 336. , 11.88888889],
[ 126. , 46. , 11.88888889],
[ 126. , 208. , 11.88888889],
[ 127. , 102. , 11.88888889],
[ 128. , 154. , 11.88888889],
[ 185. , 344. , 17.33333333],
[ 194. , 213. , 17.33333333],
[ 194. , 276. , 17.33333333],
[ 197. , 44. , 11.88888889],
[ 198. , 103. , 11.88888889],
[ 198. , 155. , 11.88888889],
[ 260. , 174. , 17.33333333],
[ 263. , 244. , 17.33333333],
[ 263. , 302. , 17.33333333],
[ 266. , 115. , 11.88888889]])
Notes
-----
The radius of each blob is approximately :math:`\sqrt{2}sigma` for
a 2-D image and :math:`\sqrt{3}sigma` for a 3-D image.
"""
image = img_as_float(image)
if log_scale:
start, stop = log(min_sigma, 10), log(max_sigma, 10)
sigma_list = np.logspace(start, stop, num_sigma)
else:
sigma_list = np.linspace(min_sigma, max_sigma, num_sigma)
# computing gaussian laplace
# s**2 provides scale invariance
gl_images = [-gaussian_laplace(image, s) * s ** 2 for s in sigma_list]
# Replace by image_cube = np.stack(hessian_images, axis=-1)
# When we upgrade minimal requirements to NumPy 1.10
sl = (slice(None),) * image.ndim + (np.newaxis,)
arrays = [np.asanyarray(arr) for arr in gl_images]
extended_arrays = [arr[sl] for arr in arrays]
image_cube = np.concatenate(extended_arrays, axis=-1)
local_maxima = peak_local_max(image_cube, threshold_abs=threshold,
footprint=np.ones((3,) * (image.ndim + 1)),
threshold_rel=0.0,
exclude_border=False)
# Convert local_maxima to float64
lm = local_maxima.astype(np.float64)
# Convert the last index to its corresponding scale value
lm[:, -1] = sigma_list[local_maxima[:, -1]]
return _prune_blobs(lm, overlap)