forked from ocaml-multicore/ocaml-multicore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ephemeron.ml
740 lines (643 loc) · 22 KB
/
ephemeron.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
(* *)
(* Copyright 1997 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
module type SeededS = sig
type key
type !'a t
val create : ?random (*thwart tools/sync_stdlib_docs*) : bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
val of_seq : (key * 'a) Seq.t -> 'a t
val clean: 'a t -> unit
val stats_alive: 'a t -> Hashtbl.statistics
(** same as {!stats} but only count the alive bindings *)
end
module type S = sig
type key
type !'a t
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
val of_seq : (key * 'a) Seq.t -> 'a t
val clean: 'a t -> unit
val stats_alive: 'a t -> Hashtbl.statistics
(** same as {!stats} but only count the alive bindings *)
end
module GenHashTable = struct
type equal =
| ETrue | EFalse
| EDead (** the garbage collector reclaimed the data *)
module MakeSeeded(H: sig
type t
type 'a container
val create: t -> 'a -> 'a container
val hash: int -> t -> int
val equal: 'a container -> t -> equal
val get_data: 'a container -> 'a option
val set_key_data: 'a container -> t -> 'a -> unit
val check_key: 'a container -> bool
end) : SeededS with type key = H.t
= struct
type 'a t =
{ mutable size: int; (* number of entries *)
mutable data: 'a bucketlist array; (* the buckets *)
seed: int; (* for randomization *)
initial_size: int; (* initial array size *)
}
and 'a bucketlist =
| Empty
| Cons of int (* hash of the key *) * 'a H.container * 'a bucketlist
(** the hash of the key is kept in order to test the equality of the hash
before the key. Same reason as for Weak.Make *)
type key = H.t
let rec power_2_above x n =
if x >= n then x
else if x * 2 > Sys.max_array_length then x
else power_2_above (x * 2) n
let prng = lazy (Random.State.make_self_init())
let create ?(random = (Hashtbl.is_randomized ())) initial_size =
let s = power_2_above 16 initial_size in
let seed = if random then Random.State.bits (Lazy.force prng) else 0 in
{ initial_size = s; size = 0; seed = seed; data = Array.make s Empty }
let clear h =
h.size <- 0;
let len = Array.length h.data in
for i = 0 to len - 1 do
h.data.(i) <- Empty
done
let reset h =
let len = Array.length h.data in
if len = h.initial_size then
clear h
else begin
h.size <- 0;
h.data <- Array.make h.initial_size Empty
end
let copy h = { h with data = Array.copy h.data }
let key_index h hkey =
hkey land (Array.length h.data - 1)
let clean h =
let rec do_bucket = function
| Empty ->
Empty
| Cons(_, c, rest) when not (H.check_key c) ->
h.size <- h.size - 1;
do_bucket rest
| Cons(hkey, c, rest) ->
Cons(hkey, c, do_bucket rest)
in
let d = h.data in
for i = 0 to Array.length d - 1 do
d.(i) <- do_bucket d.(i)
done
(** resize is the only function to do the actual cleaning of dead keys
(remove does it just because it could).
The goal is to:
- not resize infinitely when the actual number of alive keys is
bounded but keys are continuously added. That would happen if
this function always resize.
- not call this function after each addition, that would happen if this
function don't resize even when only one key is dead.
So the algorithm:
- clean the keys before resizing
- if the number of remaining keys is less than half the size of the
array, don't resize.
- if it is more, resize.
The second problem remains if the table reaches {!Sys.max_array_length}.
*)
let resize h =
let odata = h.data in
let osize = Array.length odata in
let nsize = osize * 2 in
clean h;
if nsize < Sys.max_array_length && h.size >= osize lsr 1 then begin
let ndata = Array.make nsize Empty in
h.data <- ndata; (* so that key_index sees the new bucket count *)
let rec insert_bucket = function
Empty -> ()
| Cons(hkey, data, rest) ->
insert_bucket rest; (* preserve original order of elements *)
let nidx = key_index h hkey in
ndata.(nidx) <- Cons(hkey, data, ndata.(nidx)) in
for i = 0 to osize - 1 do
insert_bucket odata.(i)
done
end
let add h key info =
let hkey = H.hash h.seed key in
let i = key_index h hkey in
let container = H.create key info in
let bucket = Cons(hkey, container, h.data.(i)) in
h.data.(i) <- bucket;
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize h
let remove h key =
let hkey = H.hash h.seed key in
let rec remove_bucket = function
| Empty -> Empty
| Cons(hk, c, next) when hkey = hk ->
begin match H.equal c key with
| ETrue -> h.size <- h.size - 1; next
| EFalse -> Cons(hk, c, remove_bucket next)
| EDead ->
(* The dead key is automatically removed. It is acceptable
for this function since it already removes a binding *)
h.size <- h.size - 1;
remove_bucket next
end
| Cons(hk,c,next) -> Cons(hk, c, remove_bucket next) in
let i = key_index h hkey in
h.data.(i) <- remove_bucket h.data.(i)
(** {!find} don't remove dead keys because it would be surprising for
the user that a read-only function mutates the state (eg. concurrent
access). Same for {!mem}.
*)
let rec find_rec key hkey = function
| Empty ->
raise Not_found
| Cons(hk, c, rest) when hkey = hk ->
begin match H.equal c key with
| ETrue ->
begin match H.get_data c with
| None ->
(* This case is not impossible because the gc can run between
H.equal and H.get_data *)
find_rec key hkey rest
| Some d -> d
end
| EFalse -> find_rec key hkey rest
| EDead ->
find_rec key hkey rest
end
| Cons(_, _, rest) ->
find_rec key hkey rest
let find h key =
let hkey = H.hash h.seed key in
(* TODO inline 3 iterations *)
find_rec key hkey (h.data.(key_index h hkey))
let rec find_rec_opt key hkey = function
| Empty ->
None
| Cons(hk, c, rest) when hkey = hk ->
begin match H.equal c key with
| ETrue ->
begin match H.get_data c with
| None ->
(* This case is not impossible because the gc can run between
H.equal and H.get_data *)
find_rec_opt key hkey rest
| Some _ as d -> d
end
| EFalse -> find_rec_opt key hkey rest
| EDead ->
find_rec_opt key hkey rest
end
| Cons(_, _, rest) ->
find_rec_opt key hkey rest
let find_opt h key =
let hkey = H.hash h.seed key in
(* TODO inline 3 iterations *)
find_rec_opt key hkey (h.data.(key_index h hkey))
let find_all h key =
let hkey = H.hash h.seed key in
let rec find_in_bucket = function
| Empty -> []
| Cons(hk, c, rest) when hkey = hk ->
begin match H.equal c key with
| ETrue -> begin match H.get_data c with
| None ->
find_in_bucket rest
| Some d -> d::find_in_bucket rest
end
| EFalse -> find_in_bucket rest
| EDead ->
find_in_bucket rest
end
| Cons(_, _, rest) ->
find_in_bucket rest in
find_in_bucket h.data.(key_index h hkey)
let replace h key info =
let hkey = H.hash h.seed key in
let rec replace_bucket = function
| Empty -> raise Not_found
| Cons(hk, c, next) when hkey = hk ->
begin match H.equal c key with
| ETrue -> H.set_key_data c key info
| EFalse | EDead -> replace_bucket next
end
| Cons(_,_,next) -> replace_bucket next
in
let i = key_index h hkey in
let l = h.data.(i) in
try
replace_bucket l
with Not_found ->
let container = H.create key info in
h.data.(i) <- Cons(hkey, container, l);
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize h
let mem h key =
let hkey = H.hash h.seed key in
let rec mem_in_bucket = function
| Empty ->
false
| Cons(hk, c, rest) when hk = hkey ->
begin match H.equal c key with
| ETrue -> true
| EFalse | EDead -> mem_in_bucket rest
end
| Cons(_hk, _c, rest) -> mem_in_bucket rest in
mem_in_bucket h.data.(key_index h hkey)
let length h = h.size
let rec bucket_length accu = function
| Empty -> accu
| Cons(_, _, rest) -> bucket_length (accu + 1) rest
let stats h =
let mbl =
Array.fold_left (fun m b -> Int.max m (bucket_length 0 b)) 0 h.data in
let histo = Array.make (mbl + 1) 0 in
Array.iter
(fun b ->
let l = bucket_length 0 b in
histo.(l) <- histo.(l) + 1)
h.data;
{ Hashtbl.num_bindings = h.size;
num_buckets = Array.length h.data;
max_bucket_length = mbl;
bucket_histogram = histo }
let rec bucket_length_alive accu = function
| Empty -> accu
| Cons(_, c, rest) when H.check_key c ->
bucket_length_alive (accu + 1) rest
| Cons(_, _, rest) -> bucket_length_alive accu rest
let stats_alive h =
let size = ref 0 in
let mbl =
Array.fold_left
(fun m b -> Int.max m (bucket_length_alive 0 b)) 0 h.data
in
let histo = Array.make (mbl + 1) 0 in
Array.iter
(fun b ->
let l = bucket_length_alive 0 b in
size := !size + l;
histo.(l) <- histo.(l) + 1)
h.data;
{ Hashtbl.num_bindings = !size;
num_buckets = Array.length h.data;
max_bucket_length = mbl;
bucket_histogram = histo }
let add_seq tbl i =
Seq.iter (fun (k,v) -> add tbl k v) i
let replace_seq tbl i =
Seq.iter (fun (k,v) -> replace tbl k v) i
let of_seq i =
let tbl = create 16 in
replace_seq tbl i;
tbl
end
end
module ObjEph = Obj.Ephemeron
let _obj_opt : Obj.t option -> 'a option = fun x ->
match x with
| None -> x
| Some v -> Some (Obj.obj v)
(** The previous function is typed so this one is also correct *)
let obj_opt : Obj.t option -> 'a option = fun x -> Obj.magic x
module K1 = struct
type ('k,'d) t = ObjEph.t
let create () : ('k,'d) t = ObjEph.create 1
let get_key (t:('k,'d) t) : 'k option = obj_opt (ObjEph.get_key t 0)
let set_key (t:('k,'d) t) (k:'k) : unit = ObjEph.set_key t 0 (Obj.repr k)
let check_key (t:('k,'d) t) : bool = ObjEph.check_key t 0
let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d)
let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t
let make key data =
let eph = create () in
set_data eph data;
set_key eph key;
eph
let query eph key =
match get_key eph with
| None -> None
| Some k when k == key -> get_data eph
| Some _ -> None
module MakeSeeded (H:Hashtbl.SeededHashedType) =
GenHashTable.MakeSeeded(struct
type 'a container = (H.t,'a) t
type t = H.t
let create k d =
let c = create () in
set_data c d;
set_key c k;
c
let hash = H.hash
let equal c k =
(* {!get_key_copy} is not used because the equality of the user can be
the physical equality *)
match get_key c with
| None -> GenHashTable.EDead
| Some k' ->
if H.equal k k' then GenHashTable.ETrue else GenHashTable.EFalse
let get_data = get_data
let set_key_data c k d =
unset_data c;
set_key c k;
set_data c d
let check_key = check_key
end)
module Make(H: Hashtbl.HashedType): (S with type key = H.t) =
struct
include MakeSeeded(struct
type t = H.t
let equal = H.equal
let hash (_seed: int) x = H.hash x
end)
let create sz = create ~random:false sz
let of_seq i =
let tbl = create 16 in
replace_seq tbl i;
tbl
end
module Bucket = struct
type nonrec ('k, 'd) t = ('k, 'd) t list ref
let k1_make = make
let make () = ref []
let add b k d = b := k1_make k d :: !b
let test_key k e =
match get_key e with
| Some x when x == k -> true
| _ -> false
let remove b k =
let rec loop l acc =
match l with
| [] -> ()
| h :: t when test_key k h -> b := List.rev_append acc t
| h :: t -> loop t (h :: acc)
in
loop !b []
let find b k =
match List.find_opt (test_key k) !b with
| Some e -> get_data e
| None -> None
let length b = List.length !b
let clear b = b := []
end
end
module K2 = struct
type ('k1, 'k2, 'd) t = ObjEph.t
let create () : ('k1,'k2,'d) t = ObjEph.create 2
let get_key1 (t:('k1,'k2,'d) t) : 'k1 option = obj_opt (ObjEph.get_key t 0)
let set_key1 (t:('k1,'k2,'d) t) (k:'k1) : unit =
ObjEph.set_key t 0 (Obj.repr k)
let check_key1 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 0
let get_key2 (t:('k1,'k2,'d) t) : 'k2 option = obj_opt (ObjEph.get_key t 1)
let set_key2 (t:('k1,'k2,'d) t) (k:'k2) : unit =
ObjEph.set_key t 1 (Obj.repr k)
let check_key2 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 1
let get_data (t:('k1,'k2,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
let set_data (t:('k1,'k2,'d) t) (d:'d) : unit =
ObjEph.set_data t (Obj.repr d)
let unset_data (t:('k1,'k2,'d) t) : unit = ObjEph.unset_data t
let make key1 key2 data =
let eph = create () in
set_data eph data;
set_key1 eph key1;
set_key2 eph key2;
ignore (Sys.opaque_identity key1);
eph
let query eph key1 key2 =
match get_key1 eph with
| None -> None
| Some k when k == key1 ->
begin match get_key2 eph with
| None -> None
| Some k when k == key2 -> get_data eph
| Some _ -> None
end
| Some _ -> None
module MakeSeeded
(H1:Hashtbl.SeededHashedType)
(H2:Hashtbl.SeededHashedType) =
GenHashTable.MakeSeeded(struct
type 'a container = (H1.t,H2.t,'a) t
type t = H1.t * H2.t
let create (k1,k2) d =
let c = create () in
set_data c d;
set_key1 c k1; set_key2 c k2;
c
let hash seed (k1,k2) =
H1.hash seed k1 + H2.hash seed k2 * 65599
let equal c (k1,k2) =
match get_key1 c, get_key2 c with
| None, _ | _ , None -> GenHashTable.EDead
| Some k1', Some k2' ->
if H1.equal k1 k1' && H2.equal k2 k2'
then GenHashTable.ETrue else GenHashTable.EFalse
let get_data = get_data
let set_key_data c (k1,k2) d =
unset_data c;
set_key1 c k1; set_key2 c k2;
set_data c d
let check_key c = check_key1 c && check_key2 c
end)
module Make(H1: Hashtbl.HashedType)(H2: Hashtbl.HashedType):
(S with type key = H1.t * H2.t) =
struct
include MakeSeeded
(struct
type t = H1.t
let equal = H1.equal
let hash (_seed: int) x = H1.hash x
end)
(struct
type t = H2.t
let equal = H2.equal
let hash (_seed: int) x = H2.hash x
end)
let create sz = create ~random:false sz
let of_seq i =
let tbl = create 16 in
replace_seq tbl i;
tbl
end
module Bucket = struct
type nonrec ('k1, 'k2, 'd) t = ('k1, 'k2, 'd) t list ref
let k2_make = make
let make () = ref []
let add b k1 k2 d = b := k2_make k1 k2 d :: !b
let test_keys k1 k2 e =
match get_key1 e, get_key2 e with
| Some x1, Some x2 when x1 == k1 && x2 == k2 -> true
| _ -> false
let remove b k1 k2 =
let rec loop l acc =
match l with
| [] -> ()
| h :: t when test_keys k1 k2 h -> b := List.rev_append acc t
| h :: t -> loop t (h :: acc)
in
loop !b []
let find b k1 k2 =
match List.find_opt (test_keys k1 k2) !b with
| Some e -> get_data e
| None -> None
let length b = List.length !b
let clear b = b := []
end
end
module Kn = struct
type ('k,'d) t = ObjEph.t
let create n : ('k,'d) t = ObjEph.create n
let length (k:('k,'d) t) : int = ObjEph.length k
let get_key (t:('k,'d) t) (n:int) : 'k option = obj_opt (ObjEph.get_key t n)
let set_key (t:('k,'d) t) (n:int) (k:'k) : unit =
ObjEph.set_key t n (Obj.repr k)
let check_key (t:('k,'d) t) (n:int) : bool = ObjEph.check_key t n
let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d)
let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t
let make keys data =
let l = Array.length keys in
let eph = create l in
set_data eph data;
for i = 0 to l - 1 do set_key eph i keys.(i) done;
eph
let query eph keys =
let l = length eph in
try
if l <> Array.length keys then raise Exit;
for i = 0 to l - 1 do
match get_key eph i with
| None -> raise Exit
| Some k when k == keys.(i) -> ()
| Some _ -> raise Exit
done;
get_data eph
with Exit -> None
module MakeSeeded (H:Hashtbl.SeededHashedType) =
GenHashTable.MakeSeeded(struct
type 'a container = (H.t,'a) t
type t = H.t array
let create k d =
let c = create (Array.length k) in
set_data c d;
for i=0 to Array.length k -1 do
set_key c i k.(i);
done;
c
let hash seed k =
let h = ref 0 in
for i=0 to Array.length k -1 do
h := H.hash seed k.(i) * 65599 + !h;
done;
!h
let equal c k =
let len = Array.length k in
let len' = length c in
if len != len' then GenHashTable.EFalse
else
let rec equal_array k c i =
if i < 0 then GenHashTable.ETrue
else
match get_key c i with
| None -> GenHashTable.EDead
| Some ki ->
if H.equal k.(i) ki
then equal_array k c (i-1)
else GenHashTable.EFalse
in
equal_array k c (len-1)
let get_data = get_data
let set_key_data c k d =
unset_data c;
for i=0 to Array.length k -1 do
set_key c i k.(i);
done;
set_data c d
let check_key c =
let rec check c i =
i < 0 || (check_key c i && check c (i-1)) in
check c (length c - 1)
end)
module Make(H: Hashtbl.HashedType): (S with type key = H.t array) =
struct
include MakeSeeded(struct
type t = H.t
let equal = H.equal
let hash (_seed: int) x = H.hash x
end)
let create sz = create ~random:false sz
let of_seq i =
let tbl = create 16 in
replace_seq tbl i;
tbl
end
module Bucket = struct
type nonrec ('k, 'd) t = ('k, 'd) t list ref
let kn_make = make
let make () = ref []
let add b k d = b := kn_make k d :: !b
let test_keys k e =
try
if length e <> Array.length k then raise Exit;
for i = 0 to Array.length k - 1 do
match get_key e i with
| Some x when x == k.(i) -> ()
| _ -> raise Exit
done;
true
with Exit -> false
let remove b k =
let rec loop l acc =
match l with
| [] -> ()
| h :: t when test_keys k h -> b := List.rev_append acc t
| h :: t -> loop t (h :: acc)
in
loop !b []
let find b k =
match List.find_opt (test_keys k) !b with
| Some e -> get_data e
| None -> None
let length b = List.length !b
let clear b = b := []
end
end