forked from EmoryMLIP/OT-Flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrainOTflowSW.py
160 lines (131 loc) · 5.81 KB
/
pretrainOTflowSW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import os
import torch
import datetime
import numpy as np
import pandas as pd
import lib.utils as utils
from src.OTFlowProblem import *
from src.Phi import *
from datasets.shallow_water import load_swdata
parser = argparse.ArgumentParser('COT-Flow')
parser.add_argument('--data', type=str, default='sw')
parser.add_argument("--nt_val", type=int, default=32, help="number of time steps for validation")
parser.add_argument('--nTh', type=int, default=2)
parser.add_argument('--dx', type=int, default=14, help="number of dimensions for x")
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--prec', type=str, default='single', choices=['single', 'double'], help="single or double precision")
parser.add_argument('--num_epochs', type=int, default=15, help="pilot run number of epochs")
parser.add_argument('--num_trials', type=int, default=100, help="pilot run number of trials")
parser.add_argument('--save', type=str, default='experiments/cnf/tabcond')
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
# add timestamp to save path
start_time = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info("start time: " + start_time)
logger.info(args)
device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu")
if args.prec == 'double':
prec = torch.float64
else:
prec = torch.float32
def compute_loss(net, x, y, nt):
Jc, cs = OTFlowProblem(x, y, net, [0, 1], nt=nt, stepper="rk4", alph=net.alph)
return Jc, cs
if __name__ == '__main__':
cvt = lambda x: x.type(prec).to(device, non_blocking=True)
columns_params = ["alpha1", "alpha2", "nt", "m", "m_y", "m_yout", "lr", "batchsz", "num_steps"]
columns_valid = ["cx"]
params_hist = pd.DataFrame(columns=columns_params)
valid_hist = pd.DataFrame(columns=columns_valid)
log_msg = ('{:5s} {:9s}'.format('trial', ' valCx'))
logger.info(log_msg)
# box constraints / acceptable range for parameter values
clampMax = 1.5
clampMin = -1.5
for trial in range(args.num_trials):
alpha_NLL = 10 ** np.random.uniform(2, 5)
alpha_HJB = 10 ** np.random.uniform(2, 5)
alpha = [1.0, alpha_NLL, alpha_HJB]
batch_size = 2 ** np.random.randint(7, 11)
learning_rate = 10 ** np.random.randint(-4, -1)
nt = 2 ** np.random.randint(3, 5)
m = 2 ** np.random.randint(9, 11)
my = 2 ** np.random.randint(5, 8)
myout = 2 ** np.random.randint(5, 8)
num_steps = 2 ** np.random.randint(3, 5)
num_epochs = np.ceil(args.num_epochs / num_steps)
# convert to int
num_epochs = int(num_epochs)
# load data
train_loader, valid_loader, _, n_feat, _, _, Vy = load_swdata(batch_size, full=False)
d = n_feat
dx = args.dx
if dx < 100:
x_full = train_loader.dataset[:, :100]
x_full = x_full.view(-1, 100)
cov_x = x_full.T @ x_full
L, V = torch.linalg.eigh(cov_x)
# get the last dx columns in V
Vx = cvt(V[:, -dx:])
else:
Vx = cvt(torch.eye(100))
dy = d - 100
params_hist.loc[len(params_hist.index)] = [alpha_NLL, alpha_HJB, nt, m, my, myout, learning_rate, batch_size, num_steps]
nt_val = args.nt_val
nTh = args.nTh
# set up neural network to model potential function Phi
net_y = nn.Sequential(
nn.Linear(dy, my),
nn.Tanh(),
nn.Linear(my, my),
nn.Tanh(),
nn.Linear(my, myout)
)
net_y = net_y.to(prec).to(device)
net_x = Phi(nTh=nTh, m=m, dx=dx, dy=myout, alph=alpha)
net_x = net_x.to(prec).to(device)
# ADAM optimizer
optim = torch.optim.Adam(list(net_x.parameters()) + list(net_y.parameters()), lr=learning_rate,
weight_decay=args.weight_decay)
net_x.train()
for epoch in range(num_epochs):
# train
for xy in train_loader:
xy = cvt(xy)
x = xy[:, :100].view(-1, 100) @ Vx
y = xy[:, 100:].view(-1, dy)
# update network for pi(x|y)
for step in range(num_steps):
# update network for pi(x|y)
optim.zero_grad()
u = net_y(y)
loss_x, costs_x = compute_loss(net_x, x, u, nt=nt)
loss_x.backward()
optim.step()
for p in net_x.parameters():
p.data = torch.clamp(p.data, clampMin, clampMax)
if torch.isnan(loss_x): # catch NaNs when hyperparameters are poorly chosen
logger.info("NaN encountered....exiting prematurely")
exit(1)
# end batch_iter
net_x.eval()
valAlphMeterCx = utils.AverageMeter()
with torch.no_grad():
for xy_valid in valid_loader:
xy_valid = cvt(xy_valid)
nex = xy_valid.shape[0]
x_valid = xy_valid[:, :100].view(-1, 100) @ Vx
y_valid = xy_valid[:, 100:].view(-1, dy)
_, val_costs_x = compute_loss(net_x, x_valid, net_y(y_valid), nt=nt_val)
val_costs_Cx = val_costs_x[1]
valAlphMeterCx.update(val_costs_Cx.item(), nex)
Cx = valAlphMeterCx.avg
log_message = '{:05d} {:9.3e} '.format(trial + 1, Cx)
logger.info(log_message)
valid_hist.loc[len(valid_hist.index)] = [Cx]
params_hist.to_csv(os.path.join(args.save, '%s_params_hist.csv' % args.data))
valid_hist.to_csv(os.path.join(args.save, '%s_valid_hist.csv' % args.data))