forked from EmoryMLIP/OT-Flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrainTabOTflowBlock.py
178 lines (133 loc) · 6.3 KB
/
pretrainTabOTflowBlock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
import datetime
import numpy as np
import pandas as pd
import lib.utils as utils
from src.OTFlowProblem import *
from src.Phi import *
from lib.tabloader import tabloader
parser = argparse.ArgumentParser('COT-Flow')
parser.add_argument(
'--data', choices=['wt_wine', 'rd_wine', 'parkinson'], type=str, default='rd_wine'
)
parser.add_argument("--nt_val", type=int, default=32, help="number of time steps for validation")
parser.add_argument('--nTh' , type=int, default=2)
parser.add_argument('--dx' , type=int, default=6, help="number of dimensions for x")
parser.add_argument("--drop_freq", type=int , default=0, help="how often to decrease learning rate; 0 lets the mdoel choose")
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--prec' , type=str, default='single', choices=['single','double'], help="single or double precision")
parser.add_argument('--num_epochs' , type=int, default=3)
parser.add_argument('--test_ratio', type=int, default=0.10)
parser.add_argument('--valid_ratio', type=int, default=0.10)
parser.add_argument('--random_state', type=int, default=42)
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--save', type=str, default='experiments/cnf/tabjoint')
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
# add timestamp to save path
start_time = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info("start time: " + start_time)
logger.info(args)
device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu")
if args.prec =='double':
prec = torch.float64
else:
prec = torch.float32
def compute_loss(net, x,y, nt):
Jc , cs = OTFlowProblem(x, y, net, [0,1], nt=nt, stepper="rk4", alph=net.alph)
return Jc, cs
if __name__ == '__main__':
cvt = lambda x: x.type(prec).to(device, non_blocking=True)
columns_params = ["alpha1", "alpha2", "nt", "width", "lr", "batchsz"]
columns_valid = ["cx", "cy", "c"]
params_hist = pd.DataFrame(columns=columns_params)
valid_hist = pd.DataFrame(columns=columns_valid)
log_msg = ('{:5s} {:9s} {:9s} {:9s}'.format('trial', ' valCx', 'valCy', 'valC'))
logger.info(log_msg)
# box constraints / acceptable range for parameter values
clampMax = 1.5
clampMin = -1.5
# sample space for hyperparameters
width_list = np.array([32, 64, 128, 256, 512])
batch_size_list = np.array([32, 64])
lr_list = np.array([0.01, 0.005, 0.001])
nt_list = np.array([8, 16])
for trial in range(50):
batch_size = int(np.random.choice(batch_size_list))
train_loader, valid_loader, test_data, train_size = tabloader(args.data, batch_size, args.test_ratio,
args.valid_ratio, args.random_state)
d = test_data.shape[1]
dx = args.dx
dy = d - dx
width = np.random.choice(width_list)
lr = np.random.choice(lr_list)
nt = np.random.choice(nt_list)
alpha = [1.0, np.exp(np.random.uniform(-1, 3)), np.exp(np.random.uniform(-1, 3))]
params_hist.loc[len(params_hist.index)] = [alpha[1], alpha[2], nt, width, lr, batch_size]
nt_val = args.nt_val
nTh = args.nTh
# set up neural network to model potential function Phi
net_y = Phi(nTh=nTh, m=width, dx=dy, dy=0, alph=alpha)
net_y = net_y.to(prec).to(device)
net_x = Phi(nTh=nTh, m=width, dx=dx, dy=dy, alph=alpha)
net_x = net_x.to(prec).to(device)
# ADAM optimizer
optim_y = torch.optim.Adam(net_y.parameters(), lr=lr, weight_decay=args.weight_decay) # lr=0.04 good
optim_x = torch.optim.Adam(net_x.parameters(), lr=lr, weight_decay=args.weight_decay) # lr=0.04 good
if args.data == 'parkinson' or args.data == 'wt_wine':
num_epochs = args.num_epochs
else:
num_epochs = 4
net_y.train()
net_x.train()
for epoch in range(num_epochs):
# train
for xy in train_loader:
xy = cvt(xy)
x = xy[:, dy:].view(-1, dx)
y = xy[:, :dy].view(-1, dy)
# update network for pi(y)
optim_y.zero_grad()
for p in net_y.parameters():
p.data = torch.clamp(p.data, clampMin, clampMax)
loss_y,costs_y = compute_loss(net_y, y, None, nt=nt)
loss_y.backward()
optim_y.step()
# update network for pi(x|y)
optim_x.zero_grad()
for p in net_x.parameters():
p.data = torch.clamp(p.data, clampMin, clampMax)
loss_x, costs_x = compute_loss(net_x, x, y, nt=nt)
loss_x.backward()
optim_x.step()
loss = loss_y + loss_x
if torch.isnan(loss): # catch NaNs when hyperparameters are poorly chosen
logger.info("NaN encountered....exiting prematurely")
exit(1)
# end batch_iter
valAlphMeterCy = utils.AverageMeter()
valAlphMeterCx = utils.AverageMeter()
for xy_valid in valid_loader:
xy_valid = cvt(xy_valid)
nex = xy_valid.shape[0]
x_valid = xy_valid[:, dy:].view(-1, dx)
y_valid = xy_valid[:, :dy].view(-1, dy)
_, val_costs_y = compute_loss(net_y, y_valid, None, nt=nt_val)
_, val_costs_x = compute_loss(net_x, x_valid, y_valid, nt=nt_val)
val_costs_Cy = val_costs_y[1]
val_costs_Cx = val_costs_x[1]
valAlphMeterCx.update(val_costs_Cx.item(), nex)
valAlphMeterCy.update(val_costs_Cy.item(), nex)
Cx = valAlphMeterCx.avg
Cy = valAlphMeterCy.avg
C = Cx + Cy
log_message = '{:05d} {:9.3e} {:9.3e} {:9.3e} '.format(trial+1, Cx, Cy, C)
logger.info(log_message)
valid_hist.loc[len(valid_hist.index)] = [Cx, Cy, C]
params_hist.to_csv(os.path.join(args.save, '%s_params_hist.csv' % args.data))
valid_hist.to_csv(os.path.join(args.save, '%s_valid_hist.csv' % args.data))