forked from EmoryMLIP/OT-Flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainOTflowCond.py
425 lines (360 loc) · 18.2 KB
/
trainOTflowCond.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import argparse
import os
import pandas as pd
import scipy.io
import numpy as np
import time
import datetime
import lib.utils as utils
from lib.utils import count_parameters
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from src.OTFlowProblem import *
from src.Phi import *
from src.mmd import mmd
from lib.tabloader import tabloader
parser = argparse.ArgumentParser('COT-Flow')
parser.add_argument(
'--data', choices=['concrete', 'energy', 'yacht', 'lv'], type=str, default='concrete'
)
parser.add_argument("--nt" , type=int, default=8, help="number of time steps")
parser.add_argument("--nt_val", type=int, default=32, help="number of time steps for validation")
parser.add_argument('--alph' , type=str, default='1.0,100.0,15.0')
parser.add_argument('--m' , type=int, default=256)
parser.add_argument('--nTh' , type=int, default=2)
parser.add_argument('--dx' , type=int, default=1, help="number of dimensions for x")
parser.add_argument('--lr' , type=float, default=0.01)
parser.add_argument("--drop_freq", type=int , default=0, help="how often to decrease learning rate; 0 lets the mdoel choose")
parser.add_argument("--lr_drop" , type=float, default=2.0, help="how much to decrease learning rate (divide by)")
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--prec' , type=str, default='single', choices=['single','double'], help="single or double precision")
parser.add_argument('--num_epochs' , type=int, default=1000)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--test_batch_size', type=int, default=32)
parser.add_argument('--test_ratio', type=int, default=0.10)
parser.add_argument('--valid_ratio', type=int, default=0.10)
parser.add_argument('--random_state', type=int, default=42)
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--early_stopping', type=int, default=10)
parser.add_argument('--save', type=str, default='experiments/cnf/tabcond')
parser.add_argument('--save_test', type=int, default=1, help="if 1 evaluate after training if 0 not")
parser.add_argument('--val_freq', type=int, default=20) # validation frequency needs to be less than viz_freq or equal to viz_freq
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
args.alph = [float(item) for item in args.alph.split(',')]
# add timestamp to save path
start_time = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info("start time: " + start_time)
logger.info(args)
test_batch_size = args.test_batch_size if args.test_batch_size else args.batch_size
device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu")
if args.prec =='double':
prec = torch.float64
else:
prec = torch.float32
# decrease the learning rate based on validation
ndecs_netx = 0
n_vals_wo_improve_netx=0
def update_lr_netx(optimizer, n_vals_without_improvement):
global ndecs_netx
if ndecs_netx == 0 and n_vals_without_improvement > args.early_stopping:
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr / args.lr_drop
ndecs_netx = 1
elif ndecs_netx == 1 and n_vals_without_improvement > args.early_stopping:
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr / args.lr_drop**2
ndecs_netx = 2
else:
ndecs_netx += 1
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr / args.lr_drop**ndecs_netx
def load_data(data, test_ratio, valid_ratio, batch_size, random_state):
if data == 'lv':
# TODO change to correct path
dataset_load = scipy.io.loadmat('.../COT-Flow/datasets/lv_data.mat')
x_train = dataset_load['x_train']
y_train = dataset_load['y_train']
dataset = np.concatenate((x_train, y_train), axis=1)
dataset[:, :4] = np.log(dataset[:, :4])
# split data and convert to tensor
train, valid = train_test_split(
dataset, test_size=valid_ratio,
random_state=random_state
)
train_sz = train.shape[0]
feat_sz = train.shape[1]
train_mean = np.mean(train, axis=0, keepdims=True)
train_std = np.std(train, axis=0, keepdims=True)
train_data = (train - train_mean) / train_std
valid_data = (valid - train_mean) / train_std
# convert to tensor
train_data = torch.tensor(train_data, dtype=torch.float32)
valid_data = torch.tensor(valid_data, dtype=torch.float32)
# load train data
trn_loader = DataLoader(
train_data,
batch_size=batch_size, shuffle=True
)
vld_loader = DataLoader(
valid_data,
batch_size=batch_size, shuffle=True
)
else:
trn_loader, vld_loader, test_set, train_sz = tabloader(data, batch_size, test_ratio, valid_ratio, random_state)
feat_sz = test_set.shape[1]
return trn_loader, vld_loader, train_sz, feat_sz
def compute_loss(net, x,y, nt):
Jc , cs = OTFlowProblem(x, y, net, [0,1], nt=nt, stepper="rk4", alph=net.alph)
return Jc, cs
def evaluate_model(net, data, batch_size, test_ratio, valid_ratio, random_state, dx, nt_val, prec, bestParams_x):
_, _, testData, _ = tabloader(data, batch_size, test_ratio, valid_ratio, random_state)
testLoader = DataLoader(
testData,
batch_size=batch_size, shuffle=True
)
d = testData.shape[1]
dy = d - dx
nt_test = nt_val
# reload model
net.load_state_dict(bestParams_x)
net = net.to(device)
# if specified precision supplied, override the loaded precision
if prec != 'None':
if prec == 'single':
argPrec = torch.float32
if prec == 'double':
argPrec = torch.float64
cvt = lambda x: x.type(argPrec).to(device, non_blocking=True)
net.eval()
with torch.no_grad():
# meters to hold testing results
testLossMeter = utils.AverageMeter()
testAlphMeterL = utils.AverageMeter()
testAlphMeterC = utils.AverageMeter()
testAlphMeterR = utils.AverageMeter()
for _, x0 in enumerate(testLoader):
x0 = cvt(x0)
nex_batch = x0.shape[0]
x_test = x0[:, dy:].view(-1, dx)
y_test = x0[:, :dy].view(-1, dy)
tst_loss_x, tst_costs_x = compute_loss(net, x_test, y_test, nt=nt_test)
testLossMeter.update(tst_loss_x.item(), nex_batch)
testAlphMeterL.update(tst_costs_x[0].item(), nex_batch)
testAlphMeterC.update(tst_costs_x[1].item(), nex_batch)
testAlphMeterR.update(tst_costs_x[2].item(), nex_batch)
# generate samples
normSamples = torch.randn(testData.shape[0], 1)
zx = cvt(normSamples)
finvx = integrate(zx, testData[:, :dy].to(device), net, [1.0, 0.0], nt_test, stepper="rk4", alph=net.alph)
modelGen = finvx[:, :dx]
# compute MMD
return testAlphMeterC.avg, mmd(modelGen, testData[:, dy:].to(device)).item()
if __name__ == '__main__':
cvt = lambda x: x.type(prec).to(device, non_blocking=True)
# load data
train_loader, valid_loader, n_train, n_feat = load_data(args.data, args.test_ratio, args.valid_ratio,
args.batch_size, args.random_state)
# hyperparameters of model
d = n_feat
dx = args.dx
dy = d -dx
alph = args.alph
nt = args.nt
nt_val = args.nt_val
nTh = args.nTh
m = args.m
# set up neural network to model potential function Phi
net_x = Phi(nTh=nTh, m=args.m, dx=dx, dy=dy, alph=alph)
net_x = net_x.to(prec).to(device)
# resume training on a model that's already had some training
if args.resume is not None:
# reload model
checkpt = torch.load(args.resume, map_location=lambda storage, loc: storage)
m = checkpt['args'].m
alph = args.alph # overwrite saved alpha
nTh = checkpt['args'].nTh
args.hutch = checkpt['args'].hutch
prec = checkpt['state_dict']['A'].dtype
net_x = Phi(nTh=nTh, m=m, dx=dx, dy=dy, alph=alph)
net_x = net_x.to(prec)
net_x.load_state_dict(checkpt["state_dict_x"])
net_x = net_x.to(device)
if args.val_freq == 0:
# if val_freq set to 0, then validate after every epoch
args.val_freq = math.ceil(n_train/args.batch_size)
# ADAM optimizer
optim_x = torch.optim.Adam(net_x.parameters(), lr=args.lr, weight_decay=args.weight_decay) # lr=0.04 good
strTitle = args.data + '_' + start_time
logger.info(net_x)
logger.info("-------------------------")
logger.info("dx={:} dy={:} m={:} nTh={:} alpha={:}".format(dx, dy, m, nTh, alph))
logger.info("nt={:} nt_val={:}".format(nt,nt_val))
logger.info("Number of trainable parameters for x: {}".format(count_parameters(net_x)))
logger.info("-------------------------")
logger.info(str(optim_x)) # optimizer info
logger.info("data={:} batch_size={:} gpu={:}".format(args.data, args.batch_size, args.gpu))
logger.info("maxEpochs={:} val_freq={:}".format(args.num_epochs, args.val_freq))
logger.info("saveLocation = {:}".format(args.save))
logger.info("-------------------------\n")
columns_train = ["step", "train_loss_x", "train_L", "train_C", "train_R"]
columns_valid = ["valid_loss_x", "valid_L", "valid_C", "valid_R"]
train_hist = pd.DataFrame(columns=columns_train)
valid_hist = pd.DataFrame(columns=columns_valid)
begin = time.time()
end = begin
best_loss_netx = float('inf')
best_cs_netx = [0.0] * 3
bestParams_netx = None
total_itr = (int(n_train / args.batch_size) + 1) * args.num_epochs
log_msg = (
'{:5s} {:6s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s}'.format(
'iter', ' time', 'loss_x', 'Lx (L2)', 'Cx (nll)', 'Rx (HJB)', 'valLoss', 'valL', 'valC', 'valR'
)
)
logger.info(log_msg)
time_meter = utils.AverageMeter()
# box constraints / acceptable range for parameter values
clampMax = 1.5
clampMin = -1.5
net_x.train()
itr = 1
for epoch in range(args.num_epochs):
# train
for _, xy in enumerate(train_loader):
xy = cvt(xy)
if args.data == 'lv':
x = xy[:, :dx].view(-1, dx)
y = xy[:, dx:].view(-1, dy)
else:
x = xy[:, dy:].view(-1, dx)
y = xy[:, :dy].view(-1, dy)
# update network for pi(x|y)
end = time.time()
optim_x.zero_grad()
for p in net_x.parameters():
p.data = torch.clamp(p.data, clampMin, clampMax)
loss_x, costs_x = compute_loss(net_x, x, y, nt=nt)
loss_x.backward()
optim_x.step()
time_meter.update(time.time() - end)
log_message = (
'{:05d} {:6.3f} {:9.3e} {:9.3e} {:9.3e} {:9.3e} '.format(
itr, time_meter.val, loss_x, costs_x[0], costs_x[1], costs_x[2]
)
)
if torch.isnan(loss_x): # catch NaNs when hyperparameters are poorly chosen
logger.info(log_message)
logger.info("NaN encountered....exiting prematurely")
logger.info("Training Time: {:} seconds".format(time_meter.sum))
logger.info('File: ' + start_time + f'_{args.data}_alph{net_x.alph[0]:.2f}_{net_x.alph[1]:.2f}' + \
f'_{net_x.alph[2]:.2f}_{args.batch_size}_{args.lr}_{m}_{args.nt}_checkpt.pth')
exit(1)
train_hist.loc[len(train_hist.index)] = [itr, loss_x.item(), costs_x[0].item(), costs_x[1].item(),
costs_x[2].item()]
# validation
if itr % args.val_freq == 0 or itr == total_itr:
net_x.eval()
with torch.no_grad():
valLossMeterx = utils.AverageMeter()
valAlphMeterLx = utils.AverageMeter()
valAlphMeterCx = utils.AverageMeter()
valAlphMeterRx = utils.AverageMeter()
for xy_valid in valid_loader:
xy_valid = cvt(xy_valid)
nex = xy_valid.shape[0]
if args.data == 'lv':
x_valid = xy_valid[:, :dx].view(-1, dx)
y_valid = xy_valid[:, dx:].view(-1, dy)
else:
x_valid = xy_valid[:, dy:].view(-1, dx)
y_valid = xy_valid[:, :dy].view(-1, dy)
val_loss_x, val_costs_x = compute_loss(net_x, x_valid, y_valid, nt=nt_val)
valLossMeterx.update(val_loss_x.item(), nex)
val_costs_Lx = val_costs_x[0]
val_costs_Cx = val_costs_x[1]
val_costs_Rx = val_costs_x[2]
valAlphMeterLx.update(val_costs_Lx.item(), nex)
valAlphMeterCx.update(val_costs_Cx.item(), nex)
valAlphMeterRx.update(val_costs_Rx.item(), nex)
Loss = valLossMeterx.avg
Lx = valAlphMeterLx.avg
Cx = valAlphMeterCx.avg
Rx = valAlphMeterRx.avg
valid_hist.loc[len(valid_hist.index)] = [Loss, Lx, Cx, Rx]
# add to print message
log_message += ' {:9.3e} {:9.3e} {:9.3e} {:9.3e} '.format(Loss, Lx, Cx, Rx)
# save best set of parameters
if Loss < best_loss_netx:
n_vals_wo_improve_netx = 0
best_loss_netx = Loss
best_cs_netx = [Lx, Cx, Rx]
utils.makedirs(args.save)
bestParams_x = net_x.state_dict()
torch.save({
'args': args,
'state_dict_x': bestParams_x,
}, os.path.join(args.save,
start_time + f'_{args.data}_alph{net_x.alph[0]:.2f}_{net_x.alph[1]:.2f}' + \
f'_{net_x.alph[2]:.2f}_{args.batch_size}_{args.lr}_{m}_{args.nt}_checkpt.pth'))
else:
n_vals_wo_improve_netx += 1
log_message += 'netx no improve: {:d}/{:d}'.format(n_vals_wo_improve_netx, args.early_stopping)
net_x.train()
logger.info(log_message) # print iteration
if args.drop_freq == 0: # if set to the code setting 0 , the lr drops based on validation
if n_vals_wo_improve_netx > args.early_stopping:
if ndecs_netx > 2:
logger.info("early stopping engaged")
logger.info("Training Time: {:} seconds".format(time_meter.sum))
logger.info('File: ' + start_time + f'_{args.data}_alph{net_x.alph[0]:.2f}_{net_x.alph[1]:.2f}' + \
f'_{net_x.alph[2]:.2f}_{args.batch_size}_{args.lr}_{m}_{args.nt}_checkpt.pth')
train_hist.to_csv(os.path.join(args.save, '%s_train_hist.csv' % strTitle))
valid_hist.to_csv(os.path.join(args.save, '%s_valid_hist.csv' % strTitle))
if bool(args.save_test) is False:
exit(0)
NLL, MMD = evaluate_model(net_x, args.data, args.batch_size, args.test_ratio, args.valid_ratio,
args.random_state, args.dx, args.nt_val, args.prec, bestParams_x)
columns_test = ["alpha", "batch_size", "lr", "width", "nt", "NLL", "MMD", "time", "iter"]
test_hist = pd.DataFrame(columns=columns_test)
test_hist.loc[len(test_hist.index)] = [args.alph, args.batch_size, args.lr, args.m, args.nt,
NLL, MMD, time_meter.sum, itr]
testfile_name = '.../COT-Flow/experiments/cnf/tabcond/' + args.data + '_test_hist.csv'
if os.path.isfile(testfile_name):
test_hist.to_csv(testfile_name, mode='a', index=False, header=False)
else:
test_hist.to_csv(testfile_name, index=False)
exit(0)
else:
update_lr_netx(optim_x, n_vals_wo_improve_netx)
n_vals_wo_improve_netx = 0
else:
# shrink step size
if itr % args.drop_freq == 0:
for p in optim_x.param_groups:
p['lr'] /= args.lr_drop
print("lr: ", p['lr'])
itr += 1
# end batch_iter
logger.info("Training Time: {:} seconds".format(time_meter.sum))
logger.info('Training has finished. ' + start_time + f'_{args.data}_alph{net_x.alph[0]:.2f}_{net_x.alph[1]:.2f}' + \
f'_{net_x.alph[2]:.2f}_{args.batch_size}_{args.lr}_{m}_{args.nt}_checkpt.pth')
train_hist.to_csv(os.path.join(args.save, '%s_train_hist.csv' % strTitle))
valid_hist.to_csv(os.path.join(args.save, '%s_valid_hist.csv' % strTitle))
if bool(args.save_test) is False:
exit(0)
NLL, MMD = evaluate_model(net_x, args.data, args.batch_size, args.test_ratio, args.valid_ratio, args.random_state,
args.dx, args.nt_val, args.prec, bestParams_x)
columns_test = ["alpha", "batch_size", "lr", "width", "nt", "NLL", "MMD", "time", "iter"]
test_hist = pd.DataFrame(columns=columns_test)
test_hist.loc[len(test_hist.index)] = [args.alph, args.batch_size, args.lr, args.m, args.nt, NLL, MMD,
time_meter.sum, itr]
testfile_name = '.../COT-Flow/experiments/cnf/tabcond/' + args.data + '_test_hist.csv'
if os.path.isfile(testfile_name):
test_hist.to_csv(testfile_name, mode='a', index=False, header=False)
else:
test_hist.to_csv(testfile_name, index=False)