-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain_eval_list_scenes.py
88 lines (71 loc) · 3.16 KB
/
main_eval_list_scenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import argparse
import numpy as np
import matplotlib.pyplot as plt
from config import read_config
from data_manager import DataManager
from direct_floor_plan_estimation import DirectFloorPlanEstimation
from utils.visualization.vispy_utils import plot_color_plc
from utils.enum import CAM_REF
from utils.data_utils import flatten_lists_of_lists
from utils.visualization.room_utils import plot_curr_room_by_patches, plot_all_rooms_by_patches
from utils.visualization.room_utils import plot_floor_plan, plot_all_planes, plot_planes_rooms_patches
from utils.eval_utils import evaluate_corners_pr, evaluate_rooms_pr
from utils.io import read_scene_list
from utils.eval_utils import evaluate_scene, dump_images, dump_result
from pathlib import Path
def main(config_file, scene_list_file, output_dir):
cfg = read_config(config_file=config_file)
scene_list = read_scene_list(scene_list_file)
all_result = []
for i, scene in enumerate(scene_list):
cfg['data.scene'], cfg['data.scene_version'] = scene.split('_')
dt = DataManager(cfg)
fpe = DirectFloorPlanEstimation(dt)
list_ly = dt.get_list_ly(cam_ref=CAM_REF.WC_SO3)
for ly in list_ly:
fpe.estimate(ly)
fpe.masking_ocg_map()
fpe.eval_room_overlapping()
points_gt = fpe.dt.pcl_gt # (3, N)
room_corner_list = fpe.compute_room_shape_all()
image_room_id = plot_all_rooms_by_patches(fpe)
image_final_fp = plot_floor_plan(
room_corner_list, fpe.global_ocg_patch)
room_corner_list = [x.T for x in room_corner_list] # Make it (N, 2)
result_dict, images_dict = evaluate_scene(
room_corner_list,
fpe.dt.room_corners,
points_gt,
axis_corners=fpe.dt.axis_corners
)
result_dict['scene'] = scene
images_dict['scene'] = scene
images_dict['room_id'] = image_room_id
images_dict['final_fp'] = image_final_fp
# Saving the results
results_dir = os.path.join(output_dir, f"{scene}")
os.makedirs(results_dir, exist_ok=True)
# GT data for references
dt.save_gt_rooms(results_dir)
# Estimated VO-SCALE and density 2d function
fpe.scale_recover.save_estimation(results_dir)
# Estimated results
dump_images(images_dict, results_dir)
# writing results
all_result.append(result_dict)
dump_result(all_result, output_dir)
def get_passed_args():
parser = argparse.ArgumentParser()
this_dir = Path(__file__).resolve().parent
parser.add_argument('--scene_list', type=str,
default=f"{this_dir}/data/multiroom_scenes_list.csv", help='txt file with a list of scenes')
parser.add_argument('--results', type=str, default=f"{this_dir}/dfpe_results",
help='Output directory for results')
parser.add_argument('--cfg', type=str,
default=f"{this_dir}/config/config.yaml", help='Config file')
opt = parser.parse_args()
return opt
if __name__ == '__main__':
opt = get_passed_args()
main(config_file=opt.cfg, scene_list_file=opt.scene_list, output_dir=opt.results)