-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
41 lines (37 loc) · 1.28 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from flask import Flask, render_template, request
import numpy as np
import cv2
from base64 import b64decode
from matplotlib import pyplot as plt
width=80
height=60
predicting=True
if predicting:
from model_example import make_model
model = make_model(input_shape=(width,height) + (1,), num_classes=2)
model.load_weights("save_at_10.h5")
app = Flask(__name__)
@app.route('/')
def index():
return render_template("index.html")
@app.route('/frame', methods=['POST'])
def frame():
json = request.get_json()
mask = np.array(list(json["mask"].items()))
mask = mask[:,1].reshape(480,640).astype(np.uint8)
header,img_encoded = str(json["img"]).split(",",1)
img_raw = b64decode(img_encoded)
img = np.fromstring(img_raw,np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
combined = np.multiply(img,mask)
frame = cv2.resize(combined,(width,height),interpolation=cv2.INTER_AREA)
if predicting:
frame=np.expand_dims(frame,axis=2)
frame=np.expand_dims(frame,axis=0)
frame=np.swapaxes(frame,1,2)
final_prediction=model.predict(frame)[0][0]
return str(final_prediction)
return "got it"
if __name__ == '__main__':
app.run(debug=True,host='0.0.0.0')