-
Notifications
You must be signed in to change notification settings - Fork 19
/
simple_inference.py
369 lines (308 loc) · 15.2 KB
/
simple_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
"""Adapted from:
@dbolya yolact: https://github.com/dbolya/yolact/eval.py
Licensed under The MIT License [see LICENSE for details]
"""
import argparse
import cv2
import os
from pathlib import Path
from numpy.core.numeric import NaN
import torch
from torch.nn.functional import interpolate
from planerecnet import PlaneRecNet
from data.augmentations import FastBaseTransform
from data.config import set_cfg, cfg, COLORS
from utils import timer
from models.functions.funcs import PCA_svd
from models.functions.funcs import calc_size_preserve_ar, pad_even_divided
from collections import defaultdict
import numpy as np
import scipy.io
color_cache = defaultdict(lambda: {})
def parse_args(argv=None):
parser = argparse.ArgumentParser(description="PlaneRecNet Inference")
parser.add_argument("--trained_model",default=None, type=str, help='Trained state_dict file path to open. If "interrupt", this will open the interrupt file.')
parser.add_argument("--config", default="PlaneRecNet_50_config", help="The config object to use.")
# Inference Settings
parser.add_argument("--image", default=None, type=str, help='Inference with a single image.')
parser.add_argument("--images", default=None, type=str, help='Inference with multiple images.')
parser.add_argument("--max_img", default=0, type=int, help="The maximum number of inference images in a folder.")
parser.add_argument("--ibims1", default=None, type=str, help="Only for iBims-1 outputs")
parser.add_argument("--ibims1_pd", default=None, type=str, help="test plane depth")
# Display Args (Default: mask, bbox, score and class label display are enabled.)
parser.add_argument("--no_mask", action="store_true", help="Whether to draw object masks or not.")
parser.add_argument("--no_box", action="store_true", help="Whether to draw object bounding boxes or not.")
parser.add_argument("--no_text", action="store_true", help="Whether to draw object scores and categories or not.")
# Inference Parameters
parser.add_argument('--top_k', default=100, type=int, help='Further restrict the number of predictions to parse')
parser.add_argument("--nms_mode", default="matrix", type=str, choices=["matrix", "mask"], help='Choose NMS type from matrix and mask nms.')
parser.add_argument('--score_threshold', default=0.3, type=float, help='Detections with a score under this threshold will not be considered.')
parser.add_argument("--depth_mode", default="colored", type=str, choices=["colored", "gray"], help='Choose visualization mode of depth map')
parser.add_argument('--depth_shift', default=512, type=float, help='Depth shift')
global args
args = parser.parse_args(argv)
def display_on_frame(result, frame, mask_alpha=0.5, fps_str='', no_mask=False, no_box=False, no_text=False):
frame_gpu = frame / 255.0
h, w, _ = frame.shape
pred_scores = result["pred_scores"]
pred_depth = result["pred_depth"].squeeze()
if pred_scores is None:
return frame.byte().cpu().numpy(), pred_depth.cpu().numpy()
pred_masks = result["pred_masks"].unsqueeze(-1)
pred_boxes = result["pred_boxes"]
pred_classes = result["pred_classes"]
num_dets = pred_scores.size()[0]
def get_color(j, on_gpu=None):
global color_cache
color_idx = (j * 5) % len(COLORS)
if on_gpu is not None and color_idx in color_cache[on_gpu]:
return color_cache[on_gpu][color_idx]
else:
color = COLORS[color_idx]
color = (color[2], color[1], color[0])
if on_gpu is not None:
color = torch.Tensor(color).to(on_gpu).float() / 255.
color_cache[on_gpu][color_idx] = color
return color
if not no_mask and num_dets>0:
# Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1])
colors = torch.cat([get_color(j, on_gpu=frame_gpu.device.index).view(
1, 1, 1, 3) for j in range(num_dets)], dim=0)
masks_color = pred_masks.repeat(1, 1, 1, 3) * colors * mask_alpha
# This is 1 everywhere except for 1-mask_alpha where the mask is
inv_alph_masks = pred_masks * (-mask_alpha) + 1
for j in range(num_dets):
frame_gpu = frame_gpu * inv_alph_masks[j] + masks_color[j]
frame_numpy = (frame_gpu * 255).byte().cpu().numpy()
for j in range(num_dets):
masks_color_np = pred_masks[j].cpu().squeeze().numpy().astype(np.uint8)
contours, hierarchy = cv2.findContours(masks_color_np, cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame_numpy,contours,-1,(255,255,255),1)
if not no_text or not no_box:
for j in reversed(range(num_dets)):
x1, y1, x2, y2 = pred_boxes[j].int().cpu().numpy()
color = get_color(j)
score = pred_scores[j].detach().cpu().numpy()
if not no_box:
cv2.rectangle(frame_numpy, (x1, y1), (x2, y2), color, 1)
if not no_text:
_class = cfg.dataset.class_names[pred_classes[j].cpu().numpy()]
text_str = '%s: %.2f' % (_class, score)
font_face = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.6
font_thickness = 1
text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0]
text_pt = (x1, y1 + text_h + 1)
text_color = [255, 255, 255]
cv2.rectangle(frame_numpy, (x1, y1),(x1 + text_w, y1 + text_h + 4), color, -1)
cv2.putText(frame_numpy, text_str, text_pt, font_face,font_scale, text_color, font_thickness, cv2.LINE_AA)
if not no_text:
score = pred_scores[j].detach().cpu().numpy()
_class = cfg.dataset.class_names[pred_classes[j].cpu().numpy()]
text_str = '%s: %.2f' % (_class, score)
font_face = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.6
font_thickness = 1
text_w, text_h = cv2.getTextSize(
text_str, font_face, font_scale, font_thickness)[0]
text_pt = (x1, y1 + text_h + 1)
text_color = [255, 255, 255]
cv2.rectangle(frame_numpy, (x1, y1),
(x1 + text_w, y1 + text_h + 4), color, -1)
cv2.putText(frame_numpy, text_str, text_pt, font_face,
font_scale, text_color, font_thickness, cv2.LINE_AA)
return frame_numpy, pred_depth.cpu().numpy()
else:
return frame.byte().cpu().numpy(), pred_depth.cpu().numpy()
def inference_image(net: PlaneRecNet, path: str, save_path: str = None, depth_mode: str='colored'):
frame_np = cv2.imread(path)
H, W, _ = frame_np.shape
if frame_np is None:
return
frame_np = cv2.resize(frame_np, calc_size_preserve_ar(W, H, cfg.max_size), interpolation=cv2.INTER_LINEAR)
frame_np = pad_even_divided(frame_np) #pad image to be evenly divided by 32
frame = torch.from_numpy(frame_np).cuda().float()
batch = FastBaseTransform()(frame.unsqueeze(0))
results = net(batch)
blended_frame, depth = display_on_frame(results[0], frame, no_mask=args.no_mask, no_box=args.no_box, no_text=args.no_text)
if save_path is None:
name, ext = os.path.splitext(path)
save_path = name + '_seg' + ext
depth_path = name + '_dep.png'
else:
name, ext = os.path.splitext(save_path)
depth_path = name + '_dep.png'
cv2.imwrite(save_path, blended_frame)
if depth_mode == 'colored':
vmin = np.percentile(depth, 1)
vmax = np.percentile(depth, 99)
depth = depth.clip(min=vmin, max=vmax)
depth = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_VIRIDIS)
cv2.imwrite(depth_path, depth_color)
elif depth_mode == 'gray':
depth = (depth*args.depth_shift).astype(np.uint16)
cv2.imwrite(depth_path, depth)
def inference_images(net: PlaneRecNet, in_folder: str, out_folder: str, max_img: int=0, depth_mode: str='colored'):
if not os.path.exists(out_folder):
os.mkdir(out_folder)
print()
index = 0
input_list = list(Path(in_folder).glob('*'))
max_img = min(max_img, len(input_list)) if max_img > 0 else len(input_list)
for p in sorted(input_list):
img_path = str(p)
name, ext = os.path.splitext(os.path.basename(img_path))
if ext != ".png" and ext != ".jpg":
continue
out_path = os.path.join(out_folder, name+ext)
inference_image(net, img_path, out_path, depth_mode=depth_mode)
print("Inference images: " + os.path.basename(img_path) + ' -> ' + os.path.basename(out_path), end='\r')
index = index + 1
if index >= max_img:
break
print()
print("Done.")
def ibims1(net: PlaneRecNet, in_folder: str, out_folder: str):
if not os.path.exists(out_folder):
os.mkdir(out_folder)
print()
index = 0
input_list = list(Path(in_folder).glob('*'))
for p in sorted(input_list):
img_path = str(p)
name, ext = os.path.splitext(os.path.basename(img_path))
depth_out_path = os.path.join(out_folder, name+"_results.mat")
if ext != ".mat":
continue
out_path = os.path.join(out_folder, name+ext)
image_data = scipy.io.loadmat(img_path)
data = image_data['data']
# extract neccessary data
rgb = data['rgb'][0][0] # RGB image
if rgb is None:
return
frame = torch.from_numpy(rgb).cuda().float()
batch = FastBaseTransform()(frame.unsqueeze(0))
results = net(batch)
pred_depth = results[0]["pred_depth"].squeeze().cpu().numpy()
scipy.io.savemat(depth_out_path, {'pred_depths': pred_depth})
vmin = np.percentile(pred_depth, 1)
vmax = np.percentile(pred_depth, 99)
pred_depth = pred_depth.clip(min=vmin, max=vmax)
pred_depth = ((pred_depth - pred_depth.min()) / (pred_depth.max() - pred_depth.min()) * 255).astype(np.uint8)
depth_color = cv2.applyColorMap(pred_depth, cv2.COLORMAP_VIRIDIS)
cv2.imwrite(depth_out_path.replace('.mat','.png'), depth_color)
print(os.path.basename(img_path) + ' -> ' + os.path.basename(out_path), end='\r')
index = index + 1
print()
print("Done.")
def ibims1_pd(net: PlaneRecNet, in_folder: str, out_folder: str):
if not os.path.exists(out_folder):
os.mkdir(out_folder)
print()
index = 0
input_list = list(Path(in_folder).glob('*'))
for p in sorted(input_list):
img_path = str(p)
name, ext = os.path.splitext(os.path.basename(img_path))
depth_out_path = os.path.join(out_folder, name+"_results.mat")
if ext != ".mat":
continue
out_path = os.path.join(out_folder, name+ext)
image_data = scipy.io.loadmat(img_path)
data = image_data['data']
calib = data['calib'][0][0]
# extract neccessary data
rgb = data['rgb'][0][0] # RGB image
if rgb is None:
return
frame = torch.from_numpy(rgb).cuda().float()
batch = FastBaseTransform()(frame.unsqueeze(0))
results = net(batch)
pred_depth = results[0]["pred_depth"]#.squeeze().cpu().numpy()
pred_masks = results[0]["pred_masks"]
if pred_masks is not None:
k_matrix = calib.transpose()
k_matrix = torch.from_numpy(k_matrix).double().cuda()
intrinsic_inv = torch.inverse(k_matrix).double().cuda()
B, C, H, W = pred_depth.shape
cx = k_matrix[0][2]
cy = k_matrix[1][2]
fx = k_matrix[0][0]
fy = k_matrix[1][1]
# convert to point clouds
v, u = torch.meshgrid(torch.arange(H), torch.arange(W))
Z = pred_depth.squeeze(dim=0)
X = (u - cx) * Z / fx
Y = (v - cy) * Z / fy
point_cloud = torch.cat((X,Y,Z), dim=0).permute(1,2,0)
N = pred_masks.shape[0]
plane_depths = []
x = torch.arange(W, dtype=torch.float32).view(1, W).repeat(H, 1)
y = torch.arange(H, dtype=torch.float32).view(H, 1).repeat(1, W)
xy1 = torch.stack((x, y, torch.ones((H, W)))).view(3, -1).double()
k_inv_dot_xy1 = torch.matmul(intrinsic_inv.squeeze(), xy1)
for idx in range(0,N):
mask = pred_masks[idx].bool()
point_cloud_seg = point_cloud[mask, :].squeeze(dim=0)
center, normal = PCA_svd(point_cloud_seg)
plane_depths.append(torch.dot(center, normal) / torch.matmul(normal, k_inv_dot_xy1))
plane_depths = torch.stack(plane_depths, dim=0)
plane_depths = plane_depths.view(-1, H, W)
pred_depth = pred_depth.squeeze()
for i in range(plane_depths.shape[0]):
pred_depth = torch.where(pred_masks[i], plane_depths[i].float(), pred_depth)
else:
pred_depth = pred_depth.squeeze()
pred_depth = pred_depth.cpu().numpy()
pred_depth[pred_depth<=0] = NaN
pred_depth[pred_depth>=10] = NaN
scipy.io.savemat(depth_out_path, {'pred_depths': pred_depth})
vmin = np.percentile(pred_depth, 1)
vmax = np.percentile(pred_depth, 99)
pred_depth = pred_depth.clip(min=vmin, max=vmax)
pred_depth = ((pred_depth - pred_depth.min()) / (pred_depth.max() - pred_depth.min()) * 255).astype(np.uint8)
depth_color = cv2.applyColorMap(pred_depth, cv2.COLORMAP_VIRIDIS)
cv2.imwrite(depth_out_path.replace('.mat','.png'), depth_color)
print(os.path.basename(img_path) + ' -> ' + os.path.basename(out_path), end='\r')
index = index + 1
print()
print("Done.")
if __name__ == "__main__":
nms_config = parse_args()
timer.disable_all()
new_nms_config = {
'nms_type': args.nms_mode,
'mask_thr': args.score_threshold,
'update_thr': args.score_threshold,
'top_k': args.top_k,}
set_cfg(args.config)
cfg.solov2.replace(new_nms_config)
#cfg.solov2.print()
net = PlaneRecNet(cfg)
if args.trained_model is not None:
net.load_weights(args.trained_model)
else:
net.init_weights(backbone_path="weights/" + cfg.backbone.path)
print(cfg.backbone.name)
net.train(mode=False)
net = net.cuda()
torch.set_default_tensor_type("torch.cuda.FloatTensor")
if args.image is not None:
if ':' in args.image:
inp, out = args.image.split(':')
print('Inference image: {}'.format(inp))
inference_image(net, inp, out, depth_mode=args.depth_mode)
else:
print('Inference image: {}'.format(args.image))
inference_image(net, args.image, depth_mode=args.depth_mode)
if args.images is not None:
inp, out = args.images.split(':')
inference_images(net, inp, out, max_img=args.max_img, depth_mode=args.depth_mode)
if args.ibims1 is not None:
inp, out = args.ibims1.split(':')
ibims1(net, inp, out)
if args.ibims1_pd is not None:
inp, out = args.ibims1_pd.split(':')
ibims1_pd(net, inp, out)