From 72c935cbc73c0ffe53da6553e8d94da403601ff2 Mon Sep 17 00:00:00 2001 From: Ethan Lew Date: Tue, 7 Mar 2023 18:56:03 -0800 Subject: [PATCH] move Parameter and child classes to their own file to prepare for pipeline (#63) --- autokoopman/autokoopman.py | 4 +- autokoopman/core/hyperparameter.py | 132 +++++++++++++++++++++++++++++ autokoopman/core/tuner.py | 111 +----------------------- autokoopman/tuner/bayesianopt.py | 2 + autokoopman/tuner/gridsearch.py | 7 +- 5 files changed, 144 insertions(+), 112 deletions(-) create mode 100644 autokoopman/core/hyperparameter.py diff --git a/autokoopman/autokoopman.py b/autokoopman/autokoopman.py index 5f8da32..c0a7a30 100644 --- a/autokoopman/autokoopman.py +++ b/autokoopman/autokoopman.py @@ -14,10 +14,12 @@ from autokoopman.core.tuner import ( HyperparameterTuner, HyperparameterMap, + TrajectoryScoring, +) +from autokoopman.core.hyperparameter import ( ParameterSpace, ContinuousParameter, DiscreteParameter, - TrajectoryScoring, ) from autokoopman.estimator.koopman import KoopmanDiscEstimator from autokoopman.tuner.gridsearch import GridSearchTuner diff --git a/autokoopman/core/hyperparameter.py b/autokoopman/core/hyperparameter.py new file mode 100644 index 0000000..7e80244 --- /dev/null +++ b/autokoopman/core/hyperparameter.py @@ -0,0 +1,132 @@ +"""Mini-Language to Express Hyperparameter Sets + +@TODO: look into backends to make this more robust +""" +import abc +from typing import Sequence, Callable +import random + +import numpy as np + +from autokoopman.core.format import _clip_list + + +class Parameter: + """hyperparameter is a set that you can + * name + * sample randomly + * check membership + + @param name: parameter identifier + """ + + def __init__(self, name): + self._name = name + + @abc.abstractmethod + def random(self): + """get an element from the parameter at random""" + pass + + @abc.abstractmethod + def is_member(self, item) -> bool: + ... + + def __contains__(self, item) -> bool: + return self.is_member(item) + + @property + def name(self): + return self._name + + def __repr__(self): + return f"<{self.__class__.__name__} Name: {self.name}>" + + +class FiniteParameter(Parameter): + """a finite set of things""" + + def __init__(self, name: str, elements: Sequence): + super(FiniteParameter, self).__init__(name) + self.elements = tuple(elements) + + def is_member(self, item) -> bool: + return item in self.elements + + def random(self): + return random.choice(self.elements) + + +class ContinuousParameter(Parameter): + """a continuous, closed interval""" + + @staticmethod + def loguniform(low=0.1, high=1, size=None): + return np.exp(np.random.uniform(np.log(low), np.log(high), size)) + + @staticmethod + def uniform(low=0, high=1, size=None): + return np.random.uniform(low, high, size) + + def __init__(self, name: str, domain_lower, domain_upper, distribution="uniform"): + super(ContinuousParameter, self).__init__(name) + assert domain_upper >= domain_lower + self._interval = (domain_lower, domain_upper) + self.distribution = distribution + + def is_member(self, item) -> bool: + return item >= self._interval[0] and item <= self._interval[1] + + def random(self): + if isinstance(self.distribution, Callable): + return self.distribution() + elif hasattr(self, self.distribution): + return getattr(self, self.distribution)( + self._interval[0], self._interval[1] + ) + else: + raise ValueError(f"cannot find distribution {self.distribution}") + + +class DiscreteParameter(FiniteParameter): + """a range object""" + + def __init__(self, name: str, domain_lower: int, domain_upper: int, step=1): + super(DiscreteParameter, self).__init__( + name, range(domain_lower, domain_upper, step) + ) + + +class ParameterSpace(Parameter): + """an interval hull""" + + def __init__(self, name: str, coords: Sequence[Parameter]): + super(ParameterSpace, self).__init__(name) + self._coords = coords + self._cdict = {c.name: c for c in self._coords} + + def is_member(self, item) -> bool: + return all([itemi in coordi for itemi, coordi in zip(item, self._coords)]) + + def random(self): + return [coordi.random() for coordi in self._coords] + + def __getitem__(self, item): + assert ( + item in self._cdict + ), f"coordinate {item} was not found in space (values are {list(self._cdict.keys())})" + return self._cdict[item] + + def __iter__(self): + for c in self._coords: + yield c + + @property + def dimension(self): + return len(self._coords) + + def __repr__(self): + return ( + f"<{self.__class__.__name__} Name: {self.name} Dimensions: {self.dimension} " + f"Coordinates: {_clip_list([s.name+f': {s.__class__.__name__}' for s in self._coords])}>" + ) diff --git a/autokoopman/core/tuner.py b/autokoopman/core/tuner.py index 7ff2733..82519af 100644 --- a/autokoopman/core/tuner.py +++ b/autokoopman/core/tuner.py @@ -1,5 +1,4 @@ import abc -import random from typing import Sequence, Callable, TypedDict, Any import numpy as np @@ -9,118 +8,12 @@ UniformTimeTrajectory, UniformTimeTrajectoriesData, ) -from autokoopman.core.format import _clip_list +from autokoopman.core.hyperparameter import ParameterSpace from sklearn.model_selection import KFold -class Parameter: - def __init__(self, name): - self._name = name - - @abc.abstractmethod - def random(self): - pass - - @abc.abstractmethod - def is_member(self, item) -> bool: - ... - - def __contains__(self, item) -> bool: - return self.is_member(item) - - @property - def name(self): - return self._name - - def __repr__(self): - return f"<{self.__class__.__name__} Name: {self.name}>" - - -class FiniteParameter(Parameter): - def __init__(self, name: str, elements: Sequence): - super(FiniteParameter, self).__init__(name) - self.elements = tuple(elements) - - def is_member(self, item) -> bool: - return item in self.elements - - def random(self): - return random.choice(self.elements) - - -class ContinuousParameter(Parameter): - @staticmethod - def loguniform(low=0.1, high=1, size=None): - return np.exp(np.random.uniform(np.log(low), np.log(high), size)) - - @staticmethod - def uniform(low=0, high=1, size=None): - return np.random.uniform(low, high, size) - - def __init__(self, name: str, domain_lower, domain_upper, distribution="uniform"): - super(ContinuousParameter, self).__init__(name) - assert domain_upper >= domain_lower - self._interval = (domain_lower, domain_upper) - self.distribution = distribution - - def is_member(self, item) -> bool: - return item >= self._interval[0] and item <= self._interval[1] - - def random(self): - if isinstance(self.distribution, Callable): - return self.distribution() - elif hasattr(self, self.distribution): - return getattr(self, self.distribution)( - self._interval[0], self._interval[1] - ) - else: - raise ValueError(f"cannot find distribution {self.distribution}") - - -class DiscreteParameter(FiniteParameter): - def __init__(self, name: str, domain_lower: int, domain_upper: int, step=1): - super(DiscreteParameter, self).__init__( - name, range(domain_lower, domain_upper, step) - ) - - -class ParameterSpace(Parameter): - def __init__(self, name: str, coords: Sequence[Parameter]): - super(ParameterSpace, self).__init__(name) - self._coords = coords - self._cdict = {c.name: c for c in self._coords} - - def is_member(self, item) -> bool: - return all([itemi in coordi for itemi, coordi in zip(item, self._coords)]) - - def random(self): - return [coordi.random() for coordi in self._coords] - - def __getitem__(self, item): - assert ( - item in self._cdict - ), f"coordinate {item} was not found in space (values are {list(self._cdict.keys())})" - return self._cdict[item] - - def __iter__(self): - for c in self._coords: - yield c - - @property - def dimension(self): - return len(self._coords) - - def __repr__(self): - return ( - f"<{self.__class__.__name__} Name: {self.name} Dimensions: {self.dimension} " - f"Coordinates: {_clip_list([s.name+f': {s.__class__.__name__}' for s in self._coords])}>" - ) - - class HyperparameterMap: - """ - define and associate a hyperparameter space with a moddel - """ + """a map to associate a hyperparameter space with a model""" def __init__(self, parameter_space: ParameterSpace): self.parameter_space = parameter_space diff --git a/autokoopman/tuner/bayesianopt.py b/autokoopman/tuner/bayesianopt.py index 1f2f64b..34c5263 100644 --- a/autokoopman/tuner/bayesianopt.py +++ b/autokoopman/tuner/bayesianopt.py @@ -5,6 +5,8 @@ TuneResults, TrajectoryScoring, HyperparameterMap, +) +from autokoopman.core.hyperparameter import ( ParameterSpace, FiniteParameter, DiscreteParameter, diff --git a/autokoopman/tuner/gridsearch.py b/autokoopman/tuner/gridsearch.py index e9081fd..2ebc743 100644 --- a/autokoopman/tuner/gridsearch.py +++ b/autokoopman/tuner/gridsearch.py @@ -5,9 +5,12 @@ TuneResults, TrajectoryScoring, HyperparameterMap, +) +from autokoopman.core.hyperparameter import ( ParameterSpace, ) import autokoopman.core.tuner as atuner +import autokoopman.core.hyperparameter as ahyp import itertools from typing import Callable @@ -17,7 +20,7 @@ class GridSearchTuner(atuner.HyperparameterTuner): def make_grid(space: ParameterSpace, n_samps): parameters = [] for coord in space: - if isinstance(coord, atuner.ContinuousParameter): + if isinstance(coord, ahyp.ContinuousParameter): if coord.distribution == "loguniform": elems = np.logspace( np.log10(coord._interval[0]), @@ -29,7 +32,7 @@ def make_grid(space: ParameterSpace, n_samps): parameters.append( np.linspace(coord._interval[0], coord._interval[1], num=n_samps) ) - elif isinstance(coord, atuner.FiniteParameter): + elif isinstance(coord, ahyp.FiniteParameter): parameters.append(list(coord.elements)) return parameters