-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerceptron_Adaline_Or.py
50 lines (41 loc) · 1.06 KB
/
Perceptron_Adaline_Or.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
### Author: Md. Raisul Islam Evan
### MBSTU CSE
import numpy as np
import matplotlib.pyplot as plt
w=np.round(np.random.rand(3)*10,1)
print("Random value: ",w)
w1=w[0]
w2=w[1]
bias=w[2]
input=np.array([[0,0],[0,1],[1,0],[1,1]])
print("Input: \n",input)
plt.plot([1,.1],[.1,1])
plt.plot([0,0,1,1],[0,1,0,1],'o')
plt.show()
targetOutput=input[:,0] | input[:,1]
print("Target output:\n",targetOutput)
#step function
def step(n):
if n>=0:
return 1
return 0
error=np.array([0,0,0,1])
e=np.sum(error)
maxIteration=100
t=0
learningRate=.8
value=[[w1,w2,bias]]
while(t<maxIteration and e!=0):
for i in range(len(input)):
actualOutput=step(np.dot(np.array([w1,w2]),input[i])+bias)
err=targetOutput[i]-actualOutput
error[i]=abs(err)
w1=round(w1+learningRate*err*input[i][0],1)
w2=round(w2+learningRate*err*input[i][1],1)
bias=round(bias+learningRate*err,1)
value.append([w1,w2,bias])
e=np.sum(error)
t+=1
print(value)
print("Iteration: ",t)
print(error)