-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathes.py
104 lines (90 loc) · 4.73 KB
/
es.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
from optimizer import Optimizer
class ES(Optimizer):
"""Evolution Strategies (ES).
Reference
---------
Hansen, N., Arnold, D.V. and Auger, A., 2015.
Evolution strategies.
In Springer Handbook of Computational Intelligence (pp. 871-898).
Springer, Berlin, Heidelberg.
https://link.springer.com/chapter/10.1007%2F978-3-662-43505-2_44
http://www.scholarpedia.org/article/Evolution_strategies
Beyer, H.G. and Schwefel, H.P., 2002.
Evolution strategies–A comprehensive introduction.
Natural Computing, 1(1), pp.3-52.
https://link.springer.com/article/10.1023/A:1015059928466
Rechenberg, I., 1989.
Evolution strategy: Nature’s way of optimization.
In Optimization: Methods and Applications, Possibilities and Limitations (pp. 106-126).
Springer, Berlin, Heidelberg.
https://link.springer.com/chapter/10.1007/978-3-642-83814-9_6
Schwefel, H.P., 1984.
Evolution strategies: A family of non-linear optimization techniques based on
imitating some principles of organic evolution.
Annals of Operations Research, 1(2), pp.165-167.
https://link.springer.com/article/10.1007/BF01876146
"""
def __init__(self, problem, options):
Optimizer.__init__(self, problem, options)
if self.n_individuals is None: # number of offspring, offspring population size (λ: lambda)
self.n_individuals = 4 + int(3 * np.log(self.ndim_problem))
if self.n_parents is None: # number of parents, parental population size (μ: mu)
self.n_parents = int(self.n_individuals / 2)
if self.n_parents > 1:
w_base, w = np.log((self.n_individuals + 1) / 2), np.log(np.arange(self.n_parents) + 1)
self._w = (w_base - w) / (self.n_parents * w_base - np.sum(w))
self._mu_eff = 1 / np.sum(np.power(self._w, 2)) # μ_eff / μ_w
self.mean = options.get('mean') # mean of Gaussian search distribution
if self.mean is None: # 'mean' has priority over 'x'
self.mean = options.get('x')
self.sigma = options.get('sigma') # global step-size (σ)
self.eta_mean = options.get('eta_mean') # learning rate of mean
self.eta_sigma = options.get('eta_sigma') # learning rate of std
self._n_generations = 0
# for restart
self.n_restart = 0
self._sigma_bak = np.copy(self.sigma)
self.sigma_threshold = options.get('sigma_threshold', 1e-10)
self._fitness_list = [self.best_so_far_y] # store best_so_far_y generated in each generation
self.stagnation = options.get('stagnation', self.ndim_problem) # number of generations
self.fitness_diff = options.get('fitness_diff', 1e-10)
def initialize(self):
raise NotImplementedError
def iterate(self):
raise NotImplementedError
def _initialize_mean(self, is_restart=False):
if is_restart or (self.mean is None):
mean = self.rng_initialization.uniform(self.initial_lower_boundary,
self.initial_upper_boundary)
else:
mean = np.copy(self.mean)
return mean
def _print_verbose_info(self, y):
if self.verbose and (not self._n_generations % self.verbose_frequency):
best_so_far_y = -self.best_so_far_y if self._is_maximization else self.best_so_far_y
info = ' * Generation {:d}: best_so_far_y {:7.5e}, min(y) {:7.5e} & Evaluations {:d}'
print(info.format(self._n_generations, best_so_far_y, np.min(y), self.n_function_evaluations))
def restart_initialize(self):
self._fitness_list.append(self.best_so_far_y)
is_restart_1, is_restart_2 = self.sigma < self.sigma_threshold, False
if len(self._fitness_list) >= self.stagnation:
is_restart_2 = (self._fitness_list[-self.stagnation] - self._fitness_list[-1]) < self.fitness_diff
is_restart = bool(is_restart_1) or bool(is_restart_2)
if is_restart:
self.n_restart += 1
self.sigma = np.copy(self._sigma_bak)
self.n_individuals *= 2
self.n_parents = int(self.n_individuals / 2)
w_base, w = np.log((self.n_individuals + 1) / 2), np.log(np.arange(self.n_parents) + 1)
self._w = (w_base - w) / (self.n_parents * w_base - np.sum(w))
self._mu_eff = 1 / np.sum(np.power(self._w, 2))
self._fitness_list = [np.Inf]
return is_restart
def _collect_results(self, fitness, mean=None):
results = Optimizer._collect_results(self, fitness)
results['mean'] = mean
results['sigma'] = self.sigma
results['_n_generations'] = self._n_generations
results['n_restart'] = self.n_restart
return results