-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_utils.py
39 lines (32 loc) · 1.97 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
def dice_coeff(outputs, labels, max_label):
dice = torch.FloatTensor(max_label - 1).fill_(0)
for label_num in range(1, max_label):
iflat = (outputs == label_num).view(-1).float()
tflat = (labels == label_num).view(-1).float()
intersection = torch.mean(iflat * tflat)
dice[label_num - 1] = (2. * intersection) / (1e-8 + torch.mean(iflat) + torch.mean(tflat))
return dice
def jacobian_determinant(disp):
device = disp.device
gradz = nn.Conv3d(3, 3, (3, 1, 1), padding=(1, 0, 0), bias=False, groups=3)
gradz.weight.data[:, 0, :, 0, 0] = torch.tensor([-0.5, 0, 0.5]).view(1, 3).repeat(3, 1)
gradz.to(device)
grady = nn.Conv3d(3, 3, (1, 3, 1), padding=(0, 1, 0), bias=False, groups=3)
grady.weight.data[:, 0, 0, :, 0] = torch.tensor([-0.5, 0, 0.5]).view(1, 3).repeat(3, 1)
grady.to(device)
gradx = nn.Conv3d(3, 3, (1, 1, 3), padding=(0, 0, 1), bias=False, groups=3)
gradx.weight.data[:, 0, 0, 0, :] = torch.tensor([-0.5, 0, 0.5]).view(1, 3).repeat(3, 1)
gradx.to(device)
jacobian = torch.cat((gradz(disp), grady(disp), gradx(disp)), 0) + torch.eye(3, 3, device=device).view(3, 3, 1, 1, 1)
jacobian = jacobian[:, :, 2:-2, 2:-2, 2:-2]
jacdet = jacobian[0, 0, :, :, :] * (
jacobian[1, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[1, 2, :, :, :] * jacobian[2, 1, :, :, :]) - \
jacobian[1, 0, :, :, :] * (
jacobian[0, 1, :, :, :] * jacobian[2, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[2, 1, :,
:, :]) + \
jacobian[2, 0, :, :, :] * (
jacobian[0, 1, :, :, :] * jacobian[1, 2, :, :, :] - jacobian[0, 2, :, :, :] * jacobian[1, 1, :,
:, :])
return jacdet.unsqueeze(0).unsqueeze(0)