This repository has been archived by the owner on Mar 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
93 lines (76 loc) · 2.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import numpy as np
import tensorflow
#from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Activation
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import backend as K
def load_mnist_data():
path = os.path.split(__file__)[0]
labels_path = os.path.join(path,'data','train-label-onehot.npy')
images_path = os.path.join(path,'data','train-image.npy')
labels = np.load(labels_path)
images = np.load(images_path)
return labels,images
# build model
batch_size = 128
num_classes = 13
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
model = Sequential()
labels,images = load_mnist_data()
images = images/255
images=images.squeeze()
offset = 40000
x_train = images[0:offset,:]
y_train = labels[0:offset,:]
x_test = images[offset:,:]
y_test = labels[offset:,:]
print('deep dive!')
# if K.image_data_format() == 'channels_first':
# x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
# x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
# input_shape = (1, img_rows, img_cols)
# else:
# x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
# x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
# input_shape = (img_rows, img_cols, 1)
input_shape=(img_rows*img_cols,)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes)
y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Activation('relu', input_shape=input_shape))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
from tensorflow.keras.optimizers import RMSprop
opt = RMSprop(lr=0.0001, decay=1e-6)
print("compiling")
model.compile(loss=tensorflow.keras.losses.categorical_crossentropy,
optimizer=opt, #tensorflow.keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])