-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG.py
231 lines (189 loc) · 8.4 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import copy
import math
import random
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
class OUNoise:
"""Ornstein-Uhlenbeck process.
Taken from Udacity deep-reinforcement-learning github repository:
https://github.com/udacity/deep-reinforcement-learning/blob/master/
ddpg-pendulum/ddpg_agent.py
"""
def __init__(
self,
size: int,
mu: float = 0.0,
theta: float = 0.15,
sigma: float = 0.2,
scale: float = 1.
):
"""Initialize parameters and noise process."""
self.state = np.float64(0.0)
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.scale = scale
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self) -> np.ndarray:
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array(
[random.random() for _ in range(len(x))]
)
self.state = x + dx
return self.scale * self.state
class GaussianNoise:
def __init__(self, size, mu=0, sigma=0.1, scale=1.):
self.size = size
self.mu = mu
self.std = sigma
self.scale = scale
def sample(self):
return self.scale * np.random.normal(self.mu, self.std, self.size)
def initialize_uniformly(layer, init_w=3e-3):
"""Initialize the weights and bias in [-init_w, init_w]."""
layer.weight.data.uniform_(-init_w, init_w)
layer.bias.data.uniform_(-init_w, init_w)
class PolicyNet(nn.Module):
def __init__(self, state_dim, action_dim, action_bound):
super(PolicyNet, self).__init__()
self.fc1 = nn.Linear(state_dim, 400)
self.fc2 = nn.Linear(400, 300)
self.fc3 = nn.Linear(300, action_dim)
self.action_bound = action_bound # action_bound是环境可以接受的动作最大值
initialize_uniformly(self.fc3)
initialize_uniformly(self.fc1, 1 / math.sqrt(state_dim))
initialize_uniformly(self.fc2, 1 / math.sqrt(400))
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x)) * self.action_bound
class ValueNet(nn.Module):
def __init__(self, state_dim, action_dim):
super(ValueNet, self).__init__()
self.fc1 = nn.Linear(state_dim, 400)
self.fc2 = nn.Linear(400 + action_dim, 300)
self.fc3 = nn.Linear(300, 1)
initialize_uniformly(self.fc3)
initialize_uniformly(self.fc1, 1 / math.sqrt(state_dim))
initialize_uniformly(self.fc2, 1 / math.sqrt(400 + action_dim))
def forward(self, x, a):
x_s = F.relu(self.fc1(x))
x = F.relu(self.fc2(torch.cat([x_s, a], dim=1)))
return self.fc3(x)
class DDPG:
"""DDPGAgent interacting with environment.
Attribute:
actor (nn.Module): target actor model to select actions
targe_actor (nn.Module): actor model to predict next actions
actor_optimizer (Optimizer): optimizer for training actor
critic (nn.Module): critic model to predict state values
target_critic (nn.Module): target critic model to predict state values
critic_optimizer (Optimizer): optimizer for training critic
gamma (float): discount factor
tau (float): parameter for soft target update
noise (OUNoise): noise generator for exploration
"""
def __init__(self, state_dim, action_dim, action_bound,
actor_lr, critic_lr, weight_decay, noise, tau, gamma, device, initial_random_steps):
self.actor = PolicyNet(state_dim, action_dim, action_bound).to(device)
self.critic = ValueNet(state_dim, action_dim).to(device)
self.target_actor = PolicyNet(state_dim, action_dim, action_bound).to(device)
self.target_critic = ValueNet(state_dim, action_dim).to(device)
self.target_critic.load_state_dict(self.critic.state_dict())
self.target_actor.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr, weight_decay=weight_decay)
self.gamma = gamma
self.noise = noise
self.action_bound = action_bound
self.tau = tau # 目标网络软更新参数
self.action_dim = action_dim
self.device = device
self.initial_random_steps = initial_random_steps
self.total_step = 0
def take_action(self, state, eval=False):
if self.total_step < self.initial_random_steps and not eval:
action = env.action_space.sample()
else:
state = torch.FloatTensor([state]).to(self.device)
action = self.actor(state).squeeze().detach().cpu().numpy()
if not eval:
action = np.clip(action + self.noise.sample(),
-self.action_bound, self.action_bound)
self.total_step += 1
return action
def update(self, transition_dict):
states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
actions = torch.tensor(transition_dict['actions'], dtype=torch.float).to(self.device)
rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1, 1).to(self.device)
next_q_values = self.target_critic(next_states, self.target_actor(next_states))
q_targets = rewards + self.gamma * next_q_values * (1 - dones)
critic_loss = F.mse_loss(self.critic(states, actions), q_targets.detach())
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
actor_loss = -self.critic(states, self.actor(states)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
self.soft_update(self.actor, self.target_actor) # 软更新策略网络
self.soft_update(self.critic, self.target_critic) # 软更新价值网络
def soft_update(self, net, target_net):
for param_target, param in zip(target_net.parameters(), net.parameters()):
param_target.data.copy_(param_target.data * (1.0 - self.tau) + param.data * self.tau)
def save(self, folder='models'):
torch.save(self.actor.state_dict(), folder + "/ddpg_actor")
torch.save(self.critic.state_dict(), folder + "/ddpg_critic")
def load_actor(self, folder='models'):
self.actor.load_state_dict(torch.load(folder + "/ddpg_actor"))
def visual(self):
self.load_actor()
utils.visualization(self, env_name)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
alg_name = 'DDPG'
actor_lr = 1e-4
critic_lr = 1e-3
weight_decay = 1e-2
num_episodes = 5000
hidden_dim = 256
gamma = 0.99
tau = 0.001 # 软更新参数
buffer_size = 1e6
initial_random_steps = 10000 # Time steps initial random policy is used
minimal_size = 10000 # Update begin step
batch_size = 64
update_interval = 1
env_name = 'Reacher-v5'
env_name = 'Hopper-v5'
env_name = 'Humanoid-v5'
env_name = 'Walker2d-v5'
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high[0]
# noise = OUNoise(action_dim, theta=0.15, sigma=0.2, scale=action_bound)
noise = GaussianNoise(action_dim, mu=0, sigma=0.1, scale=action_bound)
replay_buffer = utils.ReplayBuffer(buffer_size)
agent = DDPG(state_dim, action_dim, action_bound,
actor_lr, critic_lr, weight_decay,
noise, tau, gamma, device, initial_random_steps)
if __name__ == '__main__':
print(env_name)
return_list = utils.train_off_policy_agent(env, agent, num_episodes, replay_buffer,
minimal_size, batch_size, update_interval,
save_model=True)
utils.dump(f'./results/{alg_name}.pkl', return_list)
utils.show(f'./results/{alg_name}.pkl', alg_name)