-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathJIT.cpp
952 lines (756 loc) · 34.4 KB
/
JIT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// SPDX-License-Identifier: MIT
/*
$info$
glossary: Splatter ~ a code generator backend that concaternates configurable macros instead of doing isel
glossary: IR ~ Intermediate Representation, our high-level opcode representation, loosely modeling arm64
glossary: SSA ~ Single Static Assignment, a form of representing IR in memory
glossary: Basic Block ~ A block of instructions with no control flow, terminated by control flow
glossary: Fragment ~ A Collection of basic blocks, possibly an entire guest function or a subset of it
tags: backend|arm64
desc: Main glue logic of the arm64 splatter backend
$end_info$
*/
#include "FEXCore/Utils/Telemetry.h"
#include "Interface/Context/Context.h"
#include "Interface/Core/LookupCache.h"
#include "Interface/Core/Dispatcher/Dispatcher.h"
#include "Interface/Core/JIT/JITClass.h"
#include "Interface/IR/Passes/RegisterAllocationPass.h"
#include "Utils/MemberFunctionToPointer.h"
#include <FEXCore/Core/X86Enums.h>
#include <FEXCore/Debug/InternalThreadState.h>
#include <FEXCore/Utils/Allocator.h>
#include <FEXCore/Utils/CompilerDefs.h>
#include <FEXCore/Utils/EnumUtils.h>
#include <FEXCore/Utils/Profiler.h>
#include <FEXCore/HLE/SyscallHandler.h>
#include "Interface/Core/Interpreter/InterpreterOps.h"
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <limits>
static constexpr size_t INITIAL_CODE_SIZE = 1024 * 1024 * 16;
// We don't want to move above 128MB atm because that means we will have to encode longer jumps
static constexpr size_t MAX_CODE_SIZE = 1024 * 1024 * 128;
namespace {
static uint64_t LUDIV(uint64_t SrcHigh, uint64_t SrcLow, uint64_t Divisor) {
__uint128_t Source = (static_cast<__uint128_t>(SrcHigh) << 64) | SrcLow;
__uint128_t Res = Source / Divisor;
return Res;
}
static int64_t LDIV(uint64_t SrcHigh, uint64_t SrcLow, int64_t Divisor) {
__int128_t Source = (static_cast<__uint128_t>(SrcHigh) << 64) | SrcLow;
__int128_t Res = Source / Divisor;
return Res;
}
static uint64_t LUREM(uint64_t SrcHigh, uint64_t SrcLow, uint64_t Divisor) {
__uint128_t Source = (static_cast<__uint128_t>(SrcHigh) << 64) | SrcLow;
__uint128_t Res = Source % Divisor;
return Res;
}
static int64_t LREM(uint64_t SrcHigh, uint64_t SrcLow, int64_t Divisor) {
__int128_t Source = (static_cast<__uint128_t>(SrcHigh) << 64) | SrcLow;
__int128_t Res = Source % Divisor;
return Res;
}
static void PrintValue(uint64_t Value) {
LogMan::Msg::DFmt("Value: 0x{:x}", Value);
}
static void PrintVectorValue(uint64_t Value, uint64_t ValueUpper) {
LogMan::Msg::DFmt("Value: 0x{:016x}'{:016x}", ValueUpper, Value);
}
} // namespace
namespace FEXCore::CPU {
void Arm64JITCore::Op_Unhandled(const IR::IROp_Header* IROp, IR::NodeID Node) {
FallbackInfo Info;
if (!InterpreterOps::GetFallbackHandler(CTX->HostFeatures.SupportsPreserveAllABI, IROp, &Info)) {
#if defined(ASSERTIONS_ENABLED) && ASSERTIONS_ENABLED
LOGMAN_MSG_A_FMT("Unhandled IR Op: {}", FEXCore::IR::GetName(IROp->Op));
#endif
} else {
auto FillF80Result = [&]() {
if (!TMP_ABIARGS) {
mov(TMP1, ARMEmitter::XReg::x0);
mov(TMP2, ARMEmitter::XReg::x1);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetVReg(Node);
eor(Dst.Q(), Dst.Q(), Dst.Q());
ins(ARMEmitter::SubRegSize::i64Bit, Dst, 0, TMP1);
ins(ARMEmitter::SubRegSize::i16Bit, Dst, 4, TMP2);
};
auto FillF64Result = [&]() {
if (!TMP_ABIARGS) {
mov(VTMP1.D(), ARMEmitter::DReg::d0);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetVReg(Node);
mov(Dst.D(), VTMP1.D());
};
auto FillI32Result = [&]() {
if (!TMP_ABIARGS) {
mov(TMP1.W(), ARMEmitter::WReg::w0);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetReg(Node);
mov(Dst.W(), TMP1.W());
};
switch (Info.ABI) {
case FABI_F80_I16_F32: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
fmov(ARMEmitter::SReg::s0, Src1.S());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
ldr(ARMEmitter::XReg::x1, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<__uint128_t, uint16_t, float>(ARMEmitter::Reg::r1);
} else {
blr(ARMEmitter::Reg::r1);
}
FillF80Result();
} break;
case FABI_F80_I16_F64: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
mov(ARMEmitter::DReg::d0, Src1.D());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
ldr(ARMEmitter::XReg::x1, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<__uint128_t, uint16_t, double>(ARMEmitter::Reg::r1);
} else {
blr(ARMEmitter::Reg::r1);
}
FillF80Result();
} break;
case FABI_F80_I16_I16:
case FABI_F80_I16_I32: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetReg(IROp->Args[0].ID());
if (Info.ABI == FABI_F80_I16_I16) {
sxth(ARMEmitter::Size::i32Bit, ARMEmitter::Reg::r1, Src1);
} else {
mov(ARMEmitter::Size::i32Bit, ARMEmitter::Reg::r1, Src1);
}
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
ldr(ARMEmitter::XReg::x2, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<__uint128_t, uint16_t, uint32_t>(ARMEmitter::Reg::r2);
} else {
blr(ARMEmitter::Reg::r2);
}
FillF80Result();
} break;
case FABI_F32_I16_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
ldr(ARMEmitter::XReg::x3, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<float, uint16_t, uint64_t, uint64_t>(ARMEmitter::Reg::r3);
} else {
blr(ARMEmitter::Reg::r3);
}
if (!TMP_ABIARGS) {
fmov(VTMP1.S(), ARMEmitter::SReg::s0);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetVReg(Node);
fmov(Dst.S(), VTMP1.S());
} break;
case FABI_F64_I16_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
ldr(ARMEmitter::XReg::x3, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<double, uint16_t, uint64_t, uint64_t>(ARMEmitter::Reg::r3);
} else {
blr(ARMEmitter::Reg::r3);
}
FillF64Result();
} break;
case FABI_F64_I16_F64: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
mov(ARMEmitter::DReg::d0, Src1.D());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
ldr(ARMEmitter::XReg::x1, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<double, uint16_t, double>(ARMEmitter::Reg::r1);
} else {
blr(ARMEmitter::Reg::r1);
}
FillF64Result();
} break;
case FABI_F64_I16_F64_F64: {
const auto Src1 = GetVReg(IROp->Args[0].ID());
const auto Src2 = GetVReg(IROp->Args[1].ID());
mov(VTMP1.D(), Src1.D());
mov(VTMP2.D(), Src2.D());
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
if (!TMP_ABIARGS) {
mov(ARMEmitter::DReg::d0, VTMP1.D());
mov(ARMEmitter::DReg::d1, VTMP2.D());
}
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
ldr(ARMEmitter::XReg::x1, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<double, uint16_t, double, double>(ARMEmitter::Reg::r1);
} else {
blr(ARMEmitter::Reg::r1);
}
FillF64Result();
} break;
case FABI_I16_I16_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
ldr(ARMEmitter::XReg::x3, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<uint32_t, uint16_t, uint64_t, uint64_t>(ARMEmitter::Reg::r3);
} else {
blr(ARMEmitter::Reg::r3);
}
if (!TMP_ABIARGS) {
mov(TMP1, ARMEmitter::XReg::x0);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetReg(Node);
sxth(ARMEmitter::Size::i64Bit, Dst, TMP1);
} break;
case FABI_I32_I16_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
ldr(ARMEmitter::XReg::x3, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<uint32_t, uint16_t, uint64_t, uint64_t>(ARMEmitter::Reg::r3);
} else {
blr(ARMEmitter::Reg::r3);
}
FillI32Result();
} break;
case FABI_I64_I16_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
ldr(ARMEmitter::XReg::x3, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<uint64_t, uint16_t, uint64_t, uint64_t>(ARMEmitter::Reg::r3);
} else {
blr(ARMEmitter::Reg::r3);
}
if (!TMP_ABIARGS) {
mov(TMP1, ARMEmitter::XReg::x0);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetReg(Node);
mov(ARMEmitter::Size::i64Bit, Dst, TMP1);
} break;
case FABI_I64_I16_F80_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
const auto Src2 = GetVReg(IROp->Args[1].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r3, Src2, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r4, Src2, 4);
ldr(ARMEmitter::XReg::x5, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<uint64_t, uint16_t, uint64_t, uint64_t, uint64_t, uint64_t>(ARMEmitter::Reg::r5);
} else {
blr(ARMEmitter::Reg::r5);
}
if (!TMP_ABIARGS) {
mov(TMP1, ARMEmitter::XReg::x0);
}
FillForABICall(Info.SupportsPreserveAllABI, true);
const auto Dst = GetReg(Node);
mov(ARMEmitter::Size::i64Bit, Dst, TMP1);
} break;
case FABI_F80_I16_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
ldr(ARMEmitter::XReg::x3, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<__uint128_t, uint16_t, uint64_t, uint64_t>(ARMEmitter::Reg::r3);
} else {
blr(ARMEmitter::Reg::r3);
}
FillF80Result();
} break;
case FABI_F80_I16_F80_F80: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Src1 = GetVReg(IROp->Args[0].ID());
const auto Src2 = GetVReg(IROp->Args[1].ID());
ldrh(ARMEmitter::WReg::w0, STATE, offsetof(FEXCore::Core::CPUState, FCW));
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r2, Src1, 4);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r3, Src2, 0);
umov<ARMEmitter::SubRegSize::i16Bit>(ARMEmitter::Reg::r4, Src2, 4);
ldr(ARMEmitter::XReg::x5, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<__uint128_t, uint16_t, uint64_t, uint64_t, uint64_t, uint64_t>(ARMEmitter::Reg::r5);
} else {
blr(ARMEmitter::Reg::r5);
}
FillF80Result();
} break;
case FABI_I32_I64_I64_I128_I128_I16: {
const auto Op = IROp->C<IR::IROp_VPCMPESTRX>();
const auto SrcRAX = GetReg(Op->RAX.ID());
const auto SrcRDX = GetReg(Op->RDX.ID());
mov(TMP1, SrcRAX.X());
mov(TMP2, SrcRDX.X());
SpillForABICall(Info.SupportsPreserveAllABI, TMP3, true);
const auto Control = Op->Control;
const auto Src1 = GetVReg(Op->LHS.ID());
const auto Src2 = GetVReg(Op->RHS.ID());
if (!TMP_ABIARGS) {
mov(ARMEmitter::XReg::x0, TMP1);
mov(ARMEmitter::XReg::x1, TMP2);
}
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r2, Src1, 0);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r3, Src1, 1);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r4, Src2, 0);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r5, Src2, 1);
movz(ARMEmitter::Size::i32Bit, ARMEmitter::Reg::r6, Control);
ldr(ARMEmitter::XReg::x7, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<uint32_t, uint64_t, uint64_t, uint64_t, uint64_t, uint64_t, uint64_t, uint16_t>(ARMEmitter::Reg::r7);
} else {
blr(ARMEmitter::Reg::r7);
}
FillI32Result();
} break;
case FABI_I32_I128_I128_I16: {
SpillForABICall(Info.SupportsPreserveAllABI, TMP1, true);
const auto Op = IROp->C<IR::IROp_VPCMPISTRX>();
const auto Src1 = GetVReg(Op->LHS.ID());
const auto Src2 = GetVReg(Op->RHS.ID());
const auto Control = Op->Control;
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r0, Src1, 0);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r1, Src1, 1);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r2, Src2, 0);
umov<ARMEmitter::SubRegSize::i64Bit>(ARMEmitter::Reg::r3, Src2, 1);
movz(ARMEmitter::Size::i32Bit, ARMEmitter::Reg::r4, Control);
ldr(ARMEmitter::XReg::x5, STATE_PTR(CpuStateFrame, Pointers.Common.FallbackHandlerPointers[Info.HandlerIndex]));
if (!CTX->Config.DisableVixlIndirectCalls) [[unlikely]] {
GenerateIndirectRuntimeCall<uint32_t, uint64_t, uint64_t, uint64_t, uint64_t, uint16_t>(ARMEmitter::Reg::r5);
} else {
blr(ARMEmitter::Reg::r5);
}
FillI32Result();
} break;
case FABI_UNKNOWN:
default:
#if defined(ASSERTIONS_ENABLED) && ASSERTIONS_ENABLED
LOGMAN_MSG_A_FMT("Unhandled IR Fallback ABI: {} {}", FEXCore::IR::GetName(IROp->Op), ToUnderlying(Info.ABI));
#endif
break;
}
}
}
static void DirectBlockDelinker(FEXCore::Core::CpuStateFrame* Frame, FEXCore::Context::ExitFunctionLinkData* Record) {
auto LinkerAddress = Frame->Pointers.Common.ExitFunctionLinker;
uintptr_t branch = (uintptr_t)(Record)-8;
ARMEmitter::Emitter emit((uint8_t*)(branch), 8);
ARMEmitter::SingleUseForwardLabel l_BranchHost;
emit.ldr(TMP1, &l_BranchHost);
emit.blr(TMP1);
emit.Bind(&l_BranchHost);
emit.dc64(LinkerAddress);
ARMEmitter::Emitter::ClearICache((void*)branch, 8);
}
static void IndirectBlockDelinker(FEXCore::Core::CpuStateFrame* Frame, FEXCore::Context::ExitFunctionLinkData* Record) {
auto LinkerAddress = Frame->Pointers.Common.ExitFunctionLinker;
Record->HostBranch = LinkerAddress;
}
static uint64_t Arm64JITCore_ExitFunctionLink(FEXCore::Core::CpuStateFrame* Frame, FEXCore::Context::ExitFunctionLinkData* Record) {
auto Thread = Frame->Thread;
bool TFSet = Thread->CurrentFrame->State.flags[X86State::RFLAG_TF_RAW_LOC];
uintptr_t HostCode {};
auto GuestRip = Record->GuestRIP;
if (!TFSet) {
HostCode = Thread->LookupCache->FindBlock(GuestRip);
}
if (TFSet || !HostCode) {
// If TF is set, the cache must be skipped as different code needs to be generated.
Frame->State.rip = GuestRip;
return Frame->Pointers.Common.DispatcherLoopTop;
}
uintptr_t branch = (uintptr_t)(Record)-8;
auto offset = HostCode / 4 - branch / 4;
if (ARMEmitter::Emitter::IsInt26(offset)) {
// optimal case - can branch directly
// patch the code
ARMEmitter::Emitter emit((uint8_t*)(branch), 4);
emit.b(offset);
ARMEmitter::Emitter::ClearICache((void*)branch, 4);
// Add de-linking handler
Thread->LookupCache->AddBlockLink(GuestRip, Record, DirectBlockDelinker);
} else {
// fallback case - do a soft-er link by patching the pointer
Record->HostBranch = HostCode;
// Add de-linking handler
Thread->LookupCache->AddBlockLink(GuestRip, Record, IndirectBlockDelinker);
}
return HostCode;
}
void Arm64JITCore::Op_NoOp(const IR::IROp_Header* IROp, IR::NodeID Node) {}
Arm64JITCore::Arm64JITCore(FEXCore::Context::ContextImpl* ctx, FEXCore::Core::InternalThreadState* Thread)
: CPUBackend(Thread, INITIAL_CODE_SIZE, MAX_CODE_SIZE)
, Arm64Emitter(ctx)
, HostSupportsSVE128 {ctx->HostFeatures.SupportsSVE128}
, HostSupportsSVE256 {ctx->HostFeatures.SupportsSVE256}
, HostSupportsAVX256 {ctx->HostFeatures.SupportsAVX && ctx->HostFeatures.SupportsSVE256}
, HostSupportsRPRES {ctx->HostFeatures.SupportsRPRES}
, HostSupportsAFP {ctx->HostFeatures.SupportsAFP}
, CTX {ctx} {
RAPass = Thread->PassManager->GetPass<IR::RegisterAllocationPass>("RA");
RAPass->AddRegisters(FEXCore::IR::GPRClass, GeneralRegisters.size());
RAPass->AddRegisters(FEXCore::IR::GPRFixedClass, StaticRegisters.size());
RAPass->AddRegisters(FEXCore::IR::FPRClass, GeneralFPRegisters.size());
RAPass->AddRegisters(FEXCore::IR::FPRFixedClass, StaticFPRegisters.size());
RAPass->AddRegisters(FEXCore::IR::PREDClass, PredicateRegisters.size());
RAPass->PairRegs = PairRegisters;
{
// Set up pointers that the JIT needs to load
// Common
auto& Common = ThreadState->CurrentFrame->Pointers.Common;
Common.PrintValue = reinterpret_cast<uint64_t>(PrintValue);
Common.PrintVectorValue = reinterpret_cast<uint64_t>(PrintVectorValue);
Common.ThreadRemoveCodeEntryFromJIT = reinterpret_cast<uintptr_t>(&Context::ContextImpl::ThreadRemoveCodeEntryFromJit);
Common.CPUIDObj = reinterpret_cast<uint64_t>(&CTX->CPUID);
{
FEXCore::Utils::MemberFunctionToPointerCast PMF(&FEXCore::CPUIDEmu::RunFunction);
Common.CPUIDFunction = PMF.GetConvertedPointer();
}
{
FEXCore::Utils::MemberFunctionToPointerCast PMF(&FEXCore::CPUIDEmu::RunXCRFunction);
Common.XCRFunction = PMF.GetConvertedPointer();
}
{
FEXCore::Utils::MemberFunctionToPointerCast PMF(&FEXCore::HLE::SyscallHandler::HandleSyscall);
Common.SyscallHandlerObj = reinterpret_cast<uint64_t>(CTX->SyscallHandler);
Common.SyscallHandlerFunc = PMF.GetVTableEntry(CTX->SyscallHandler);
}
Common.ExitFunctionLink = reinterpret_cast<uintptr_t>(&Context::ContextImpl::ThreadExitFunctionLink<Arm64JITCore_ExitFunctionLink>);
// Fill in the fallback handlers
InterpreterOps::FillFallbackIndexPointers(Common.FallbackHandlerPointers);
// Platform Specific
auto& AArch64 = ThreadState->CurrentFrame->Pointers.AArch64;
AArch64.LUDIV = reinterpret_cast<uint64_t>(LUDIV);
AArch64.LDIV = reinterpret_cast<uint64_t>(LDIV);
AArch64.LUREM = reinterpret_cast<uint64_t>(LUREM);
AArch64.LREM = reinterpret_cast<uint64_t>(LREM);
}
// Must be done after Dispatcher init
ClearCache();
// Setup dynamic dispatch.
if (ParanoidTSO()) {
RT_LoadMemTSO = &Arm64JITCore::Op_ParanoidLoadMemTSO;
RT_StoreMemTSO = &Arm64JITCore::Op_ParanoidStoreMemTSO;
} else {
RT_LoadMemTSO = &Arm64JITCore::Op_LoadMemTSO;
RT_StoreMemTSO = &Arm64JITCore::Op_StoreMemTSO;
}
}
void Arm64JITCore::EmitDetectionString() {
const char JITString[] = "FEXJIT::Arm64JITCore::";
EmitString(JITString);
Align();
}
void Arm64JITCore::ClearCache() {
// Get the backing code buffer
auto CodeBuffer = GetEmptyCodeBuffer();
SetBuffer(CodeBuffer->Ptr, CodeBuffer->Size);
EmitDetectionString();
}
Arm64JITCore::~Arm64JITCore() {}
bool Arm64JITCore::IsInlineConstant(const IR::OrderedNodeWrapper& WNode, uint64_t* Value) const {
auto OpHeader = IR->GetOp<IR::IROp_Header>(WNode);
if (OpHeader->Op == IR::IROps::OP_INLINECONSTANT) {
auto Op = OpHeader->C<IR::IROp_InlineConstant>();
if (Value) {
*Value = Op->Constant;
}
return true;
} else {
return false;
}
}
bool Arm64JITCore::IsInlineEntrypointOffset(const IR::OrderedNodeWrapper& WNode, uint64_t* Value) const {
auto OpHeader = IR->GetOp<IR::IROp_Header>(WNode);
if (OpHeader->Op == IR::IROps::OP_INLINEENTRYPOINTOFFSET) {
auto Op = OpHeader->C<IR::IROp_InlineEntrypointOffset>();
if (Value) {
uint64_t Mask = ~0ULL;
const auto Size = OpHeader->Size;
if (Size == IR::OpSize::i32Bit) {
Mask = 0xFFFF'FFFFULL;
}
*Value = (Entry + Op->Offset) & Mask;
}
return true;
} else {
return false;
}
}
FEXCore::IR::RegisterClassType Arm64JITCore::GetRegClass(IR::NodeID Node) const {
return FEXCore::IR::RegisterClassType {GetPhys(Node).Class};
}
bool Arm64JITCore::IsFPR(IR::NodeID Node) const {
auto Class = GetRegClass(Node);
return Class == IR::FPRClass || Class == IR::FPRFixedClass;
}
bool Arm64JITCore::IsGPR(IR::NodeID Node) const {
auto Class = GetRegClass(Node);
return Class == IR::GPRClass || Class == IR::GPRFixedClass;
}
void Arm64JITCore::EmitInterruptChecks(bool CheckTF) {
if (CheckTF) {
ARMEmitter::SingleUseForwardLabel l_TFUnset;
ARMEmitter::SingleUseForwardLabel l_TFBlocked;
// Note that this needs to be before the below suspend checks, as X86 checks this flag immediately after executing an instruction.
ldrb(TMP1, STATE_PTR(CpuStateFrame, State.flags[X86State::RFLAG_TF_RAW_LOC]));
cbz(ARMEmitter::Size::i32Bit, TMP1, &l_TFUnset);
// X86 semantically checks TF after executing each instruction, so e.g. setting a context with TF set will execute a single instruction
// and then raise an exception. However on the FEX side this is simpler to implement by checking at the start of each instruction, handle this by having bit 1 being unset in the flag state indicate that TF is blocked for a single instruction.
tbz(TMP1, 1, &l_TFBlocked);
// Block TF for a single instruction when the frontend jumps to a new context by unsetting bit 1.
ldrb(TMP1, STATE_PTR(CpuStateFrame, State.flags[X86State::RFLAG_TF_RAW_LOC]));
and_(ARMEmitter::Size::i32Bit, TMP1, TMP1, ~(1 << 1));
strb(TMP1, STATE_PTR(CpuStateFrame, State.flags[X86State::RFLAG_TF_RAW_LOC]));
Core::CpuStateFrame::SynchronousFaultDataStruct State = {
.FaultToTopAndGeneratedException = 1,
.Signal = Core::FAULT_SIGTRAP,
.TrapNo = X86State::X86_TRAPNO_DB,
.si_code = 2,
.err_code = 0,
};
uint64_t Constant {};
memcpy(&Constant, &State, sizeof(State));
LoadConstant(ARMEmitter::Size::i64Bit, TMP1, Constant);
str(TMP1, STATE, offsetof(FEXCore::Core::CpuStateFrame, SynchronousFaultData));
ldr(TMP1, STATE, offsetof(FEXCore::Core::CpuStateFrame, Pointers.Common.GuestSignal_SIGTRAP));
br(TMP1);
Bind(&l_TFBlocked);
// If TF was blocked for this instruction, unblock it for the next.
LoadConstant(ARMEmitter::Size::i32Bit, TMP1, 0b11);
strb(TMP1, STATE_PTR(CpuStateFrame, State.flags[X86State::RFLAG_TF_RAW_LOC]));
Bind(&l_TFUnset);
}
if (CTX->Config.NeedsPendingInterruptFaultCheck) {
// Trigger a fault if there are any pending interrupts
// Used only for suspend on WIN32 at the moment
strb(ARMEmitter::XReg::zr, STATE,
offsetof(FEXCore::Core::InternalThreadState, InterruptFaultPage) - offsetof(FEXCore::Core::InternalThreadState, BaseFrameState));
}
#ifdef _M_ARM_64EC
static constexpr uint16_t SuspendMagic {0xCAFE};
ldr(TMP2.W(), STATE_PTR(CpuStateFrame, SuspendDoorbell));
ARMEmitter::SingleUseForwardLabel l_NoSuspend;
cbz(ARMEmitter::Size::i32Bit, TMP2, &l_NoSuspend);
brk(SuspendMagic);
Bind(&l_NoSuspend);
#endif
}
CPUBackend::CompiledCode Arm64JITCore::CompileCode(uint64_t Entry, uint64_t Size, bool SingleInst, const FEXCore::IR::IRListView* IR,
FEXCore::Core::DebugData* DebugData, const FEXCore::IR::RegisterAllocationData* RAData,
bool CheckTF) {
FEXCORE_PROFILE_SCOPED("Arm64::CompileCode");
JumpTargets.clear();
uint32_t SSACount = IR->GetSSACount();
this->Entry = Entry;
this->RAData = RAData;
this->DebugData = DebugData;
this->IR = IR;
// Fairly excessive buffer range to make sure we don't overflow
uint32_t BufferRange = SSACount * 16;
if ((GetCursorOffset() + BufferRange) > CurrentCodeBuffer->Size) {
CTX->ClearCodeCache(ThreadState);
}
CodeData.BlockBegin = GetCursorAddress<uint8_t*>();
// Put the code header at the start of the data block.
ARMEmitter::BackwardLabel JITCodeHeaderLabel {};
Bind(&JITCodeHeaderLabel);
JITCodeHeader* CodeHeader = GetCursorAddress<JITCodeHeader*>();
CursorIncrement(sizeof(JITCodeHeader));
#ifdef VIXL_DISASSEMBLER
const auto DisasmBegin = GetCursorAddress<const vixl::aarch64::Instruction*>();
#endif
// AAPCS64
// r30 = LR
// r29 = FP
// r19..r28 = Callee saved
// r18 = Platform Register (Matters if we target Windows or iOS)
// r16..r17 = Inter-procedure scratch
// r9..r15 = Temp
// r8 = Indirect Result
// r0...r7 = Parameter/Results
//
// FPRS:
// v8..v15 = (lower 64bits) Callee saved
// Our allocation:
// X0 = ThreadState
// X1 = MemBase
//
// X1-X3 = Temp
// X4-r18 = RA
CodeData.BlockEntry = GetCursorAddress<uint8_t*>();
// Get the address of the JITCodeHeader and store in to the core state.
// Two instruction cost, each 1 cycle.
adr(TMP1, &JITCodeHeaderLabel);
str(TMP1, STATE, offsetof(FEXCore::Core::CPUState, InlineJITBlockHeader));
EmitInterruptChecks(CheckTF);
SpillSlots = RAData->SpillSlots();
if (SpillSlots) {
const auto TotalSpillSlotsSize = SpillSlots * MaxSpillSlotSize;
if (ARMEmitter::IsImmAddSub(TotalSpillSlotsSize)) {
sub(ARMEmitter::Size::i64Bit, ARMEmitter::Reg::rsp, ARMEmitter::Reg::rsp, TotalSpillSlotsSize);
} else {
LoadConstant(ARMEmitter::Size::i64Bit, TMP1, TotalSpillSlotsSize);
sub(ARMEmitter::Size::i64Bit, ARMEmitter::XReg::rsp, ARMEmitter::XReg::rsp, TMP1, ARMEmitter::ExtendedType::LSL_64, 0);
}
}
PendingTargetLabel = nullptr;
for (auto [BlockNode, BlockHeader] : IR->GetBlocks()) {
using namespace FEXCore::IR;
#if defined(ASSERTIONS_ENABLED) && ASSERTIONS_ENABLED
auto BlockIROp = BlockHeader->CW<FEXCore::IR::IROp_CodeBlock>();
LOGMAN_THROW_AA_FMT(BlockIROp->Header.Op == IR::OP_CODEBLOCK, "IR type failed to be a code block");
#endif
auto BlockStartHostCode = GetCursorAddress<uint8_t*>();
{
const auto Node = IR->GetID(BlockNode);
const auto IsTarget = JumpTargets.try_emplace(Node).first;
// if there's a pending branch, and it is not fall-through
if (PendingTargetLabel && PendingTargetLabel != &IsTarget->second) {
b(PendingTargetLabel);
}
PendingTargetLabel = nullptr;
Bind(&IsTarget->second);
}
for (auto [CodeNode, IROp] : IR->GetCode(BlockNode)) {
const auto ID = IR->GetID(CodeNode);
switch (IROp->Op) {
#define REGISTER_OP_RT(op, x) \
case FEXCore::IR::IROps::OP_##op: std::invoke(RT_##x, this, IROp, ID); break
#define REGISTER_OP(op, x) \
case FEXCore::IR::IROps::OP_##op: Op_##x(IROp, ID); break
#define IROP_DISPATCH_DISPATCH
#include <FEXCore/IR/IRDefines_Dispatch.inc>
#undef REGISTER_OP
default: Op_Unhandled(IROp, ID); break;
}
}
if (DebugData) {
DebugData->Subblocks.push_back({static_cast<uint32_t>(BlockStartHostCode - CodeData.BlockEntry),
static_cast<uint32_t>(GetCursorAddress<uint8_t*>() - BlockStartHostCode)});
}
}
// Make sure last branch is generated. It certainly can't be eliminated here.
if (PendingTargetLabel) {
b(PendingTargetLabel);
}
PendingTargetLabel = nullptr;
// CodeSize not including the tail data.
const uint64_t CodeOnlySize = GetCursorAddress<uint8_t*>() - CodeData.BlockBegin;
// Add the JitCodeTail
auto JITBlockTailLocation = GetCursorAddress<uint8_t*>();
auto JITBlockTail = GetCursorAddress<JITCodeTail*>();
CursorIncrement(sizeof(JITCodeTail));
auto JITRIPEntriesLocation = GetCursorAddress<uint8_t*>();
auto JITRIPEntries = GetCursorAddress<JITRIPReconstructEntries*>();
CursorIncrement(sizeof(JITRIPReconstructEntries) * DebugData->GuestOpcodes.size());
// Put the block's RIP entry in the tail.
// This will be used for RIP reconstruction in the future.
// TODO: This needs to be a data RIP relocation once code caching works.
// Current relocation code doesn't support this feature yet.
JITBlockTail->RIP = Entry;
JITBlockTail->GuestSize = Size;
JITBlockTail->SingleInst = SingleInst;
JITBlockTail->SpinLockFutex = 0;
{
// Store the RIP entries.
JITBlockTail->NumberOfRIPEntries = DebugData->GuestOpcodes.size();
JITBlockTail->OffsetToRIPEntries = JITRIPEntriesLocation - JITBlockTailLocation;
uintptr_t CurrentRIPOffset = 0;
uint64_t CurrentPCOffset = 0;
for (size_t i = 0; i < DebugData->GuestOpcodes.size(); i++) {
const auto& GuestOpcode = DebugData->GuestOpcodes[i];
auto& RIPEntry = JITRIPEntries[i];
uint64_t HostPCOffset = GuestOpcode.HostEntryOffset - CurrentPCOffset;
int64_t GuestRIPOffset = GuestOpcode.GuestEntryOffset - CurrentRIPOffset;
LOGMAN_THROW_AA_FMT(HostPCOffset <= std::numeric_limits<uint16_t>::max(), "PC offset too large");
LOGMAN_THROW_AA_FMT(GuestRIPOffset >= std::numeric_limits<int16_t>::min(), "RIP offset too small");
LOGMAN_THROW_AA_FMT(GuestRIPOffset <= std::numeric_limits<int16_t>::max(), "RIP offset too large");
RIPEntry.HostPCOffset = GuestOpcode.HostEntryOffset - CurrentPCOffset;
RIPEntry.GuestRIPOffset = GuestOpcode.GuestEntryOffset - CurrentRIPOffset;
CurrentPCOffset = GuestOpcode.HostEntryOffset;
CurrentRIPOffset = GuestOpcode.GuestEntryOffset;
}
}
CodeHeader->OffsetToBlockTail = JITBlockTailLocation - CodeData.BlockBegin;
CodeData.Size = GetCursorAddress<uint8_t*>() - CodeData.BlockBegin;
JITBlockTail->Size = CodeData.Size;
ClearICache(CodeData.BlockBegin, CodeOnlySize);
#ifdef VIXL_DISASSEMBLER
if (Disassemble() & FEXCore::Config::Disassemble::STATS) {
auto HeaderOp = IR->GetHeader();
LOGMAN_THROW_AA_FMT(HeaderOp->Header.Op == IR::OP_IRHEADER, "First op wasn't IRHeader");
LogMan::Msg::IFmt("RIP: 0x{:x}", Entry);
LogMan::Msg::IFmt("Guest Code instructions: {}", HeaderOp->NumHostInstructions);
LogMan::Msg::IFmt("Host Code instructions: {}", CodeOnlySize >> 2);
LogMan::Msg::IFmt("Blow-up Amt: {}x", double(CodeOnlySize >> 2) / double(HeaderOp->NumHostInstructions));
}
if (Disassemble() & FEXCore::Config::Disassemble::BLOCKS) {
const auto DisasmEnd = reinterpret_cast<const vixl::aarch64::Instruction*>(JITBlockTailLocation);
LogMan::Msg::IFmt("Disassemble Begin");
for (auto PCToDecode = DisasmBegin; PCToDecode < DisasmEnd; PCToDecode += 4) {
DisasmDecoder->Decode(PCToDecode);
auto Output = Disasm->GetOutput();
LogMan::Msg::IFmt("{}", Output);
}
LogMan::Msg::IFmt("Disassemble End");
}
#endif
if (DebugData) {
DebugData->HostCodeSize = CodeData.Size;
DebugData->Relocations = &Relocations;
}
this->IR = nullptr;
return CodeData;
}
void Arm64JITCore::ResetStack() {
if (SpillSlots == 0) {
return;
}
const auto TotalSpillSlotsSize = SpillSlots * MaxSpillSlotSize;
if (ARMEmitter::IsImmAddSub(TotalSpillSlotsSize)) {
add(ARMEmitter::Size::i64Bit, ARMEmitter::Reg::rsp, ARMEmitter::Reg::rsp, TotalSpillSlotsSize);
} else {
// Too big to fit in a 12bit immediate
LoadConstant(ARMEmitter::Size::i64Bit, TMP1, TotalSpillSlotsSize);
add(ARMEmitter::Size::i64Bit, ARMEmitter::XReg::rsp, ARMEmitter::XReg::rsp, TMP1, ARMEmitter::ExtendedType::LSL_64, 0);
}
}
fextl::unique_ptr<CPUBackend> CreateArm64JITCore(FEXCore::Context::ContextImpl* ctx, FEXCore::Core::InternalThreadState* Thread) {
return fextl::make_unique<Arm64JITCore>(ctx, Thread);
}
} // namespace FEXCore::CPU