-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path005_graphischeUeberpruefung.R
1214 lines (1026 loc) · 61.1 KB
/
005_graphischeUeberpruefung.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ################################################################################ libraries
# library(tidytext)
# library(readr)
# library(summarytools)
# library(rvest)
# library(expss)
# # library(hunspell)
# library(lubridate)
# # library(quanteda)
# # library(tm)
# # library(topicmodels)
# # library(stopwords)
# library(stringi)
# #library(rvisidata)
# library(qdap)
# library(mgsub)
# library(dirichletprocess)
# library(igraph)
# library(ggraph)
# library(esquisse)
# library(ggforce)
# library(ggh4x)
# library(plotly)
# library(data.table)
# library(tidytable)
# library(gridExtra)
# library(ggpubr)
# library(scales)
# library(TSstudio)
# library(caret)
# library(ggsci)
# library(tidyverse)
# library(pals)
# library(Polychrome)
# library(hrbrthemes)
# library(ggpmisc)
# library(ggfortify)
# library(changepoint)
# library(strucchange)
# library(rsthemes)
#
# ################################################################################
#
# library(knitr)
# library(kableExtra)
# library(DT)
# # library(tm)
# # library(topicmodels)
# # library(reshape2)
# # library(ggplot2)
# # library(wordcloud)
# # library(pals)
# # library(SnowballC)
# # library(lda)
# # library(ldatuning)
# library(flextable)
# # activate klippy for copy-to-clipboard button
# # klippy::klippy()
#
# # emoji clipping
# # library(emoji)
# # library(textclean)
# ==============================================================================================================================================# ==============================================================================================================================================# ==============================================================================================================================================
# setwd(dir = "~/Documents/uni/masterarbeit/scraping/polResp-css/auswertungRfiles/")
#
# # load für relevante datensets
#
# load("zwischenspeicherung/environment3_komplett.RData")
# # colours
# medienPolitikerFarben <- c("Medien"="#008080", "PolitikerInnen"="#fb4d46")
#
# parteifarben <- c("AfD"="#0087c1", "B90/Die Grünen"="#19a329",
# "CDU"="black", "CSU"="skyblue", "Die Linke"="#be3075",
# "FDP"="#ffee00", "SPD"="#e40006", "Südschleswigscher Wählerverband"="darkblue")
#
# bundesländer <- c("Baden-Württemberg"="black", "Bayern"="skyblue", "Berlin"="#eb4c42",
# "Brandenburg"="#69472D", "Bremen"="darkseagreen",
# "Hamburg"="#246bce", "Hessen"="#873260", "Mecklenburg-Vorpommern"="#f5c942",
# "Niedersachsen"="#cae00d", "Nordrhein-Westfalen"="#38761D",
# "Rheinland-Pfalz"="#800020", "Saarland"="blue", "Sachsen"="#4a5d23",
# "Sachsen-Anhalt"="#954535", "Schleswig-Holstein"="blue4",
# "Thüringen"="#cdba96", "Überregional"="#a2add0")
#
# sechzehnFarben <- c("black", "skyblue","#eb4c42", "#69472D", "darkseagreen", "#246bce",
# "#873260", "#f5c942", "#cae00d", "#38761D", "#800020", "blue",
# "#4a5d23", "#954535", "blue4", "#a1a3fd", "#b2beb5")
#
# topicFarben <- c("ukraine"="#005bbb", "energie"="#ceff00", "soziales"="#e40006", "zukunft"="#cc397b",
# "covid"="#b5a642", "klima"="#03c03c", "politikEuropa"="blue4", "politikInternational"="#8a496b",
# "verkehr"="#4166f5", "verteidigungspolitik"="#4B5320",
# "pluralismusMedien"="#00cdcd", "verfassungsfeindlich"="#654321", "protesteIran"="#229f40",
# "flutAhrtal"="#873260", "polizistenmordKusel"="orange")
#
# theHeat <- heat.colors(14)
# rainCol <- rainbow(14)
# palettePolychrome1 <- Polychrome::createPalette(N = 15, seedcolors = c("#bb0040", "#10adf0", "#ec843e", "#356043"))
# geographie <- c("Westen"="#10adf0", "Osten"="#b40040")
# paletteCategorical2 <- c("Politiker"="#bb0040", "Medien"="#10adf0")
# paletteCategorical3 <- c("Politiker Ost"="#bb0040", "Politiker Gesamt"="orange", "Politiker West" = "#10adf0",
# "Medien Ost"="#bb0000", "Medien Gesamt"="orange", "Medien West"="#10adc0")
# ===============================================================================================================================================
# ######################################## FUNKTIONALE NEUBENENNUNGEN AUS DATEI 04
#
# # POLITIKER
# # timePol <- politikerAnalysedaten
# timePol_topics <- politikerAnalysedatenThemen
# timePol_party <- politikerAnalysedaten_Parteien
# timePol_userParty <- politikerAnalysedaten_userParteien
# timePol_topicsParty <- politikerAnalysedaten_TopicsUndParteien
# timePol_topicsUser <- politikerAnalysedaten_TopicsUndUser
# timePol_maximus <- politikerAnalysedaten_maximus
#
# # MEDIEN
# timeMedia <- medienAnalysedaten_userAggregiert
# timeMedia_topics <- medienAnalysedaten_tagesbasis
# timeMedia_topicsUser <- medienAnalysedaten_userTagesbasis
# timeMedia_userBundesland <- medienAnalysedaten_userBundesland
# timeMedia_maximus <- medienAnalysedaten_maximus
# # timeMedia_discursivePower <- medienAnalysedaten_discursivePower ## vorsicht, unterschiedliche anzahlen, lieber nicht benutzen
# ==============================================================================================================================================
# ÜBERBLICKSGRAPHIK: BEIDE SPHÄREN UND DIE JEWEILIGE THEMENBESPIELUNG IM DIREKTEN VERGLEICH
# dabei keine einschränkungen nach akteuren, sondern einfach alle genommen
# BILDUNG SUMME TWEETS PRO THEMA: politikerdaten
# themenüberblickPolitiker <- data.frame(apply(X = timePol_maximus[,c(5:19)], MARGIN = 2, FUN = sum)) # gleiches ergebnis, mehr text
themenüberblickPolitiker <- as_tidytable(apply(X = timePol_topics[,-1], MARGIN = 2, FUN = sum), .keep_rownames = T)
themenüberblickPolitiker <- themenüberblickPolitiker %>% rename(names = rn, anzahl = x)
## bei altem code noch genutzt; nur dann, wenn data.frame statt as_tidytable für apply genutzt;
## nur hier als spickzettel für zukunft
# themenüberblickPolitiker$names <- rownames(themenüberblickPolitiker)
# themenüberblickPolitiker <- themenüberblickPolitiker %>%
# as_tidytable() %>%
# rename(anzahl = apply.X...timePol_topics....1...MARGIN...2..FUN...sum.)
# ansicht
themenüberblickPolitiker
# factor reorder absteigend
themenüberblickPolitiker <- themenüberblickPolitiker %>% mutate(names = fct_reorder(names, desc(-anzahl)))
# tweets politiker insgesamt
sum(themenüberblickPolitiker$anzahl)
# alternativ auch das möglich
# themenüberblickPolitiker <- data.frame(apply(X = politikerAnalysedatenThemen[,-1], MARGIN = 2, FUN = sum))
# ===============================================================================================================================================
# BILDUNG SUMME TWEETS PRO THEMA: mediendaten
# unterschiedliche zahlen bei discpow datensatz vs. tagesbasis; hier nutzung der tagessummierung
# themenüberblickMedien <- data.frame(apply(X = medienAnalysedaten_discursivePower[,c(6:20)], MARGIN = 2, FUN = sum)) ## NICHT NUTZEN
themenüberblickMedien <- as_tidytable(apply(X = medienAnalysedaten_tagesbasis[,-1], MARGIN = 2, FUN = sum), .keep_rownames = T)
themenüberblickMedien <- themenüberblickMedien %>% rename(names = rn, anzahl = x)
# tidytable + ansicht
themenüberblickMedien
# factor reorder absteigend
themenüberblickMedien <- themenüberblickMedien %>% mutate(names = fct_reorder(names, desc(-anzahl)))
# tweets medien insgesamt
sum(themenüberblickMedien$anzahl)
# ===============================================================================================================================================
# NORMALISIERUNG MIN-MAX
minMaxNorm <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
newNormalPol <- function(x) {
# summe <- sum(df_col)
x / 83658 # vorher: 98803
}
newNormalMed <- function(x) {
# summe <- sum(df_col)
x / 607871 # vorher: 611506
}
## PROZENTUALE THEMENANTEILE PRO FOKUSGRUPPE
formel_prozentualisierung <- function(obj) {
obj / sum(obj)
}
###########
## NORMALISIERUNG AUF DEN PROZENTUALEN ANTEIL VON POSTS PRO THEMA
# normalisierung politiker- und medienthemen mentions auf gesamtzahl aller themen-mentions
proportionalPolitiker <- as_tidytable(apply(themenüberblickPolitiker[,2], MARGIN = 2, FUN = newNormalPol))
proportionalPolitiker$names <- themenüberblickPolitiker$names
proportionalMedia <- as_tidytable(apply(themenüberblickMedien[,2], MARGIN = 2, FUN = newNormalMed))
proportionalMedia$names <- themenüberblickPolitiker$names
proportionalPolitiker <- proportionalPolitiker %>% mutate(names = fct_reorder(names, desc(-anzahl)))
# proportionalMedia <- proportionalMedia %>% mutate(names = fct_reorder(names, desc(-anzahl)))
# MIN-MAX-NORMALISIERUNG
processPol <- preProcess(as_tidytable(themenüberblickPolitiker), method = "range")
minmaxPolitiker <- predict(processPol, as_tidytable(themenüberblickPolitiker))
processMedien <- preProcess(as_tidytable(themenüberblickMedien), method = "range")
minmaxMedia <- predict(processMedien, as_tidytable(themenüberblickMedien))
# ==============================================================================================================================================
# => SPEICHERUNG, DA HILFREICH FÜR THEMENFRAGE 1 ZUM EINSTIEG IN AUSWERTUNGSKAPITEL
# gruppe hinzufügen zu proportionalen datensätzen
proportionalPolitiker$GRUPPE <- "Politiker"
proportionalMedia$GRUPPE <- "Medien"
# GRAPHISCH
überblPol <- ggplot(data = proportionalPolitiker, mapping = aes(y=names, x=anzahl, fill=names)) +
stat_summary(geom = "bar", fun = sum) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1, size = 10, face = "bold")) +
scale_x_percent(limits = c(0,0.25), breaks = seq(0, 0.25, 0.05)) +
scale_fill_manual(name="", values = topicsDistinctColours) +
xlab("Anteil %") +
ylab ("") +
ggtitle("PolitikerInnen: Themenaufmerksamkeit", subtitle = "Prozentualer Anteil am Gesamtkorpus")
# ggplot(data= themenüberblickPolitiker) +
# geom_bar(aes(y=anzahl, fill=names), position = "fill")
überblMedia <- ggplot(data = proportionalMedia, mapping = aes(y=names, x=anzahl, fill=names)) +
stat_summary(geom = "bar", fun = sum) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1, size = 10, face = "bold")) +
scale_x_percent(limits = c(0,0.25), breaks = seq(0, 0.25, 0.05)) +
scale_fill_manual(name="", values = topicsDistinctColours) +
xlab("Anteil %") +
ylab ("") +
ggtitle("Medien: Themenaufmerksamkeit", subtitle = "Prozentualer Anteil am Gesamtkorpus")
(themen_gegenüber_basic <- ggarrange(überblPol, überblMedia, legend = "none", labels = c("1)", "2)")))
## es gibt hier die möglichkeit, die themen in der gleichen farbe zu halten (topicFarben nutzen)
## oder alternativ die graphik nach den jeweiligen gruppen zu färben (rot politiker, blau medien z. B.)
# ggsave(themen_gegenüber_basic, filename = "themen_gegenüber_basic",
# plot = themen_gegenüber_basic, units = "px",
# device = "png",path = "graphiken/",
# height = 800, width = 1400, dpi = "retina")
# ===============================================================================================================================================
# # OBACHT: nicht Ostdeutschland vergleichen mit Gesamtdeutschland; sonst ist Ost da auch mit eingerechnet
# # ERSTELLEN EINES GEMEINSAMEN DATENSATZES DES THEMENÜBERBLICKS MIT BEZEICHNUNGEN VON WELCHER GRUNDLAGE ETWAS STAMMT
# gemeinsam <- themenüberblickPolitiker %>% mutate(kennzeichnung = "Politiker Gesamt") %>%
# bind_rows(themenüberblickMedien) %>%
# mutate(kennzeichnung = replace_na(kennzeichnung, "Medien Gesamt")) %>%
# bind_rows(überblickPolOst) %>%
# mutate(kennzeichnung = replace_na(kennzeichnung, "Politiker Ostdeutschland")) %>%
# bind_rows(überblickMedienOst) %>%
# mutate(kennzeichnung = replace_na(kennzeichnung, "Medien Ostdeutschland"))
# processGemeinsam <- preProcess(as_tidytable(gemeinsam), method = "range")
# gemeinsamNorm <- predict(processGemeinsam, as_tidytable(gemeinsam))
# # factor order
# themenüberblickPolitikerNorm <- themenüberblickPolitikerNorm %>% mutate(names = fct_reorder(names, desc(anzahl)))
# themenüberblickMedieNorm <- themenüberblickMedienNorm %>% mutate(names = fct_reorder(names, desc(anzahl)))
# gemeinsamNorm <- gemeinsamNorm %>% mutate(names = fct_reorder(names, desc(anzahl)))
#
#
# # GEGENÜBERSTELLUNG
# ggplot(gemeinsamNorm, aes(kennzeichnung, anzahl, fill = names)) +
# stat_summary(geom="bar", fun=sum, position = "fill", colour="white") +
# scale_fill_manual(values=unname(palettePolychrome1)) +
# theme_dark()
# # piechart
# ggplot(data = themenüberblickPolitiker, mapping = aes(x="", y=anzahl, fill=names)) +
# geom_bar(stat = "identity", width = 1, colour = "white") +
# coord_polar("y", start = 0) +
# scale_fill_manual(values=unname(topicFarben)) +
# theme_void(base_family = "TeX Gyre Heros")
# # lollipop chart (OBACHT OSTDEUTSCHLAND VS. GESAMT)
# ggplot(data=gemeinsamNorm) +
# geom_point(aes(x=names, y=anzahl, colour=kennzeichnung, size = 2.5)) +
# geom_segment(aes(x=names, xend=names, y=0, yend=anzahl, colour=kennzeichnung)) +
# coord_flip() +
# scale_colour_manual(values=unname(palettePolychrome1)) +
# hrbrthemes::theme_ft_rc()
# # barchart nebeneinander dodge
# ggplot(data=gemeinsamNorm, aes(x=names, y=anzahl, fill=kennzeichnung)) +
# geom_bar(stat = "identity", position = "dodge") +
# coord_flip() +
# scale_fill_manual(values=unname(palettePolychrome1)) +
# hrbrthemes::theme_ft_rc()
# # cleveland dot plot
# gemeinsamCleveland <- data.frame(names = themenüberblickPolitiker$names,
# anzahlPolitiker = themenüberblickPolitiker$anzahl,
# anzahlMedien = themenüberblickMedien$anzahl,
# anzahlPolitikerNorm = head(gemeinsamNorm$anzahl, 15),
# anzahlMedienNorm = tail(gemeinsamNorm$anzahl, 15))
# gemeinsamCleveland <- as_tidytable(gemeinsamCleveland)
# # sortierweise 1: nach größe des durchschnittswertes
# gemeinsamCleveland <- gemeinsamCleveland %>%
# rowwise() %>%
# mutate(durchschnittswerte = mean(c(anzahlPolitiker, anzahlMedien))) %>%
# mutate(names = fct_reorder(names, desc(durchschnittswerte)))
#
# gemeinsamCleveland
# gemeinsamCleveland <- gemeinsamCleveland %>%
# arrange(desc(durchschnittswerte)) %>%
# mutate(names = factor(names, levels = names))
#
# ggplot(data = gemeinsamCleveland) +
# geom_segment(aes(x=names, xend=names, y=anzahlPolitikerNorm, yend=anzahlMedienNorm), colour="white") +
# geom_point(aes(x=names, y=anzahlPolitikerNorm, colour = "Politiker")) +
# geom_point(aes(x=names, y=anzahlMedienNorm, colour = "Medien")) +
# theme_ft_rc() +
# scale_colour_manual(name="Gruppe", values = paletteCategorical2) +
# coord_flip() +
# ggtitle(label = "Themen", subtitle = "") +
# xlab("Themen") +
# ylab("%")
# gemeinsam <- themenüberblickPolitiker %>% mutate(kennzeichnung = "Politiker Gesamt") %>%
# bind_rows(themenüberblickMedien) %>%
# mutate(kennzeichnung = replace_na(kennzeichnung, "Medien Gesamt")) %>%
# bind_rows(überblickPolOst) %>%
# mutate(kennzeichnung = replace_na(kennzeichnung, "Politiker Ostdeutschland")) %>%
# bind_rows(überblickMedienOst) %>%
# mutate(kennzeichnung = replace_na(kennzeichnung, "Medien Ostdeutschland"))
# ===============================================================================================================================================
# richtiger datensatz mit ost und west teilung erstellen
# in diesem fall muss überlegt werden, was mit denen passiert, die überregional sind
# am schlauesten ist wahrscheinlich wegzulassen
# überregional sagt ja auch aus: das ist nicht gebunden
ostdeutschlandListe <- c("Thüringen", "Sachsen", "Sachsen-Anhalt", "Brandenburg", "Mecklenburg-Vorpommern")
westdeutschland <- c("Baden-Württemberg", "Bayern", "Hessen", "Rheinland-Pfalz", "Nordrhein-Westfalen",
"Niedersachsen", "Schleswig-Holstein", "Saarland", "Bremen", "Hamburg", "Berlin")
# politiker und mediendaten je nach zuordnung zu ost und west
politikOst <- politikerAnalysedaten_maximus %>% filter(bundesland %in% ostdeutschlandListe)
medienOst <- medienAnalysedaten_maximus %>% filter(bundesland %in% ostdeutschlandListe)
#
politikWest <- politikerAnalysedaten_maximus %>% filter(bundesland %in% westdeutschland)
medienWest <- medienAnalysedaten_maximus %>% filter(bundesland %in% westdeutschland)
#===============================================================================
überblickPolOst <- as_tidytable(apply(X=politikOst[,c(5:19)], MARGIN = 2, FUN = sum), .keep_rownames = T)
überblickPolOst <- überblickPolOst %>% rename(names = rn, anzahl = x)
überblickMedienOst <- as_tidytable(apply(X = medienOst[,c(4:18)], MARGIN = 2, FUN = sum), .keep_rownames = T)
überblickMedienOst <- überblickMedienOst %>% rename(names = rn, anzahl = x)
überblickPolWest <- as_tidytable(apply(X = politikWest[,c(5:19)], MARGIN = 2, FUN = sum), .keep_rownames = T)
überblickPolWest <- überblickPolWest %>% rename(names = rn, anzahl = x)
überblickMedienWest <- as_tidytable(apply(X = medienWest[,c(4:18)], MARGIN = 2, FUN = sum), .keep_rownames = T)
überblickMedienWest <- überblickMedienWest %>% rename(names = rn, anzahl = x)
###
sum(überblickMedienOst$anzahl)
sum(überblickPolOst$anzahl)
sum(überblickMedienWest$anzahl)
sum(überblickPolWest$anzahl)
#===============================================================================
# normalisierung auf anteilig 100%
proportionalOst_politiker <- as_tidytable(apply(überblickPolOst[,2], MARGIN = 2, FUN = formel_prozentualisierung))
proportionalOst_politiker$names <- überblickPolOst$names
proportionalWest_politiker <- as_tidytable(apply(überblickPolWest[,2], MARGIN = 2, FUN = formel_prozentualisierung))
proportionalWest_politiker$names <- überblickPolWest$names
proportionalOst_medien <- as_tidytable(apply(überblickMedienOst[,2], MARGIN = 2, FUN = formel_prozentualisierung))
proportionalOst_medien$names <- überblickMedienOst$names
proportionalWest_medien <- as_tidytable(apply(überblickMedienWest[,2], MARGIN = 2, FUN = formel_prozentualisierung))
proportionalWest_medien$names <- überblickMedienWest$names
#===============================================================================
# min max normalisierung
processPolOst <- preProcess(as_tidytable(überblickPolOst), method = "range")
überblickPolOstNorm <- predict(processPolOst, as_tidytable(überblickPolOst))
processPolWest <- preProcess(as_tidytable(überblickPolWest), method = "range")
überblickPolWestNorm <- predict(processPolWest, as_tidytable(überblickPolWest))
processMedienOst <- preProcess(as_tidytable(überblickMedienOst), method = "range")
überblickMedienOstNorm <- predict(processMedienOst, as_tidytable(überblickMedienOst))
processMedienWest <- preProcess(as_tidytable(überblickMedienWest), method = "range")
überblickMedienWestNorm <- predict(processMedienWest, as_tidytable(überblickMedienWest))
#===============================================================================
# datensätze für osten und westen, jeweils medien UND politiker
gemeinsamOst <- überblickPolOst %>% mutate(kennzeichnung = "Politiker Ost") %>%
bind_rows(überblickMedienOst) %>%
mutate(kennzeichnung = replace_na(kennzeichnung, "Medien Ost"))
gemeinsamWest <- überblickPolWest %>% mutate(kennzeichnung = "Politiker West") %>%
bind_rows(überblickMedienWest) %>%
mutate(kennzeichnung = replace_na(kennzeichnung, "Medien West"))
#===============================================================================
# medien und politiker auf 100% normalisiert, macht an sich gar nicht sehr viel sinn, nur nice to have
proportionalWest_ganz<- as_tidytable(apply(gemeinsamWest[,2], MARGIN = 2, FUN = formel_prozentualisierung))
proportionalWest_ganz$names <- gemeinsamWest$names
proportionalOst_ganz<- as_tidytable(apply(gemeinsamOst[,2], MARGIN = 2, FUN = formel_prozentualisierung))
proportionalOst_ganz$names <- gemeinsamOst$names
#===============================================================================
# # gemeinsame min max; überarbeitung oder halt einfach rauslassen, weil sinnlos
# processOstNorm <- preProcess(as_tidytable(gemeinsamOst), method = "range")
# gemeinsamOstNorm <- predict(processOstNorm, as_tidytable(gemeinsamOst))
#
# processWestNorm <- preProcess(as_tidytable(gemeinsamWest), method = "range")
# gemeinsamWestNorm <- predict(processWestNorm, as_tidytable(gemeinsamWest))
#
# # aus ungleichem topf
# gemeinsamOstNormUngleichAbsolut <- data.frame(names = themenüberblickPolitiker$names,
# anzahlPolitikerOstNorm = überblickPolOst$anzahl,
# anzahlMedienOstNorm = überblickMedienOst$anzahl,
# anzahlPolitikerNorm = themenüberblickPolitiker$anzahl,
# anzahlMedienNorm = themenüberblickMedien$anzahl)
# #
# gemeinsamOstNormUngleich <- data.frame(names = themenüberblickPolitikerNorm$names,
# anzahlPolitikerOstNorm = überblickPolOstNorm$anzahl,
# anzahlMedienOstNorm = überblickMedienOstNorm$anzahl,
# anzahlPolitikerNorm = themenüberblickPolitikerNorm$anzahl,
# anzahlMedienNorm = themenüberblickMedienNorm$anzahl)
# gleich genormt
# gemeinsamOstNormGleich <- data.frame(names = themenüberblickPolitikerNorm$names,
# anzahlPolitikerOstNorm = head(überblickPolOstNorm$anzahl, 15),
# anzahlMedienOstNorm = tail(gemeinsamOstNorm$anzahl, 15),
# anzahlPolitikerNorm = head(gemeinsamNorm$anzahl, 15),
# anzahlMedienNorm = tail(gemeinsamNorm$anzahl, 15))
# norm ost vs. norm west: alle vier gruppen mit 2x pol und 2x medien sind jeweils in sich selbst genormt
# ANGLEICHUNG AN NEUE NAMENSGEBUNG NOTWENDIG
gnormt <- data.frame(names = themenüberblickPolitikerNorm$names,
politikerOst = proportionalOst_politiker$anzahl,
politikerWest = proportionalWest_politiker$anzahl,
medOst = proportionalOst_medien$anzahl,
medWest = proportionalWest_medien$anzahl)
# factor order GNORMT
SORT_gnormt_politiker <- gnormt %>% mutate(names = fct_reorder(names, desc(-politikerOst)))
SORT_gnormt_medien <- gnormt %>% mutate(names = fct_reorder(names, desc(-medOst)))
SORT_gnormt_alleGleich <- gnormt %>% mutate(names = fct_reorder(names, desc(-politikerOst)))
# vorsicht: hier wird gesamtdeutschland mit osten verglichen; gesamtdeutschland enthält nochmal den osten
# es werden potentiell doppelte nennungen gemacht und damit die statistiken verzerrt
# ggplot(data = gemeinsamOstNormUngleichAbsolut) +
# geom_segment(aes(x=names, xend=names, y=anzahlPolitikerOstNorm, yend=anzahlPolitikerNorm), colour="white") +
# geom_point(aes(x=names, y=anzahlPolitikerNorm, colour = "Politiker Gesamt")) +
# geom_point(aes(x=names, y=anzahlPolitikerOstNorm, colour = "Politiker Ost")) +
# theme_ft_rc() +
# scale_colour_manual(name="Gruppe", values = paletteCategorical3) +
# coord_flip() +
# ggtitle(label = "Themen", subtitle = "") +
# xlab("Themen") +
# ylab("Anteil %")
#===============================================================================
# politiker ostdeutschland und westdeutschland im vergleich
politiker_ostwest <- ggplot(data = SORT_gnormt_alleGleich) +
geom_segment(aes(x=names, xend=names, y=politikerOst, yend=politikerWest), colour="white") +
geom_point(aes(x=names, y=politikerWest, colour = "Politiker West")) +
geom_point(aes(x=names, y=politikerOst, colour = "Politiker Ost")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1, size = 10, face = "bold")) +
scale_y_percent() +
scale_colour_manual(name="Gruppe", values = paletteCategorical3) +
coord_flip() +
ggtitle(label = "Themen der POLITIKERINNEN im Vergleich", subtitle = "Vergleich von Ost- und Westdeutschland") +
xlab("Themen") +
ylab("Anteil %")
# medien ostdeutschland und westdeutschland im vergleich
medien_ostwest <- ggplot(data = SORT_gnormt_alleGleich) +
geom_segment(aes(x=names, xend=names, y=medOst, yend=medWest), colour="white") +
geom_point(aes(x=names, y=medWest, colour = "Medien West")) +
geom_point(aes(x=names, y=medOst, colour = "Medien Ost")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1, size = 10, face = "bold")) +
scale_y_percent() +
sc <- le_colour_m <- nual(name="Gruppe", values = paletteCategorical3) +
coord_flip() +
ggtitle(label = "Themen der MEDIEN im Vergleich", subtitle = "Vergleich von Ost- und Westdeutschland") +
xlab("Themen") +
ylab("Anteil %")
lollipop_vergleich_ostwest <- ggarrange(politiker_ostwest, medien_ostwest, common.legend = T)
lollipop_vergleich_ostwest
#===============================================================================
SORT_überblickPolitiker <- themenüberblickPolitiker %>% mutate(names = fct_reorder(names, desc(anzahl)))
SORT_überblickMedien <- themenüberblickMedien %>% mutate(names = fct_reorder(names, desc(anzahl)))
SORT_überblickPolitiker <- cbind(SORT_überblickPolitiker, "Zuweisung"="Politiker")
SORT_überblickMedien <- cbind(SORT_überblickMedien, "Zuweisung"="Medien")
#===============================================================================
# # geht auch für prozentualisierung und bindung an df
# plyr::ddply(.data = SORT_überblickMedien, .variables = "Zuweisung", .fun = transform, prozent=formel_prozentualisierung(SORT_überblickMedien$anzahl))
# prozentuale werte an df anschließen
SORT_überblickMedien <- cbind(SORT_überblickMedien, "prozent"=formel_prozentualisierung(SORT_überblickMedien$anzahl))
# min max normalisierung und werte anhängen
processÜberblickMedien <- preProcess(as_tidytable(SORT_überblickMedien), method = "range")
SORT_überblickMedien_NORM <- predict(processÜberblickMedien, as_tidytable(SORT_überblickMedien))
SORT_überblickMedien_NORM <- cbind(SORT_überblickMedien_NORM, "anzahlAbs"=SORT_überblickMedien$anzahl)
medienAggregiert <- SORT_überblickMedien_NORM
medienAggregiert
# gleiches für politikerdaten
SORT_überblickPolitiker <- cbind(SORT_überblickPolitiker, "prozent"=formel_prozentualisierung(SORT_überblickPolitiker$anzahl))
processÜberblickPolitiker <- preProcess(as_tidytable(SORT_überblickPolitiker), method = "range")
SORT_überblickPolitiker_NORM <- predict(processÜberblickPolitiker, as_tidytable(SORT_überblickPolitiker))
SORT_überblickPolitiker_NORM <- cbind(SORT_überblickPolitiker_NORM, "anzahlAbs"=SORT_überblickPolitiker$anzahl)
politikerAggregiert <- SORT_überblickPolitiker_NORM
politikerAggregiert
# processPolOst <- preProcess(as_tidytable(überblickPolOst), method = "range")
# überblickPolOstNorm <- predict(processPolOst, as_tidytable(überblickPolOst))
ggplot(data = politikerAggregiert, aes(x=Zuweisung, y=prozent, fill=names)) +
geom_bar(stat="identity", position = "dodge", width = 1.1) +
geom_label(aes(label = anzahlAbs), vjust=-0.2, position = position_dodge(1.1)) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 35, vjust = 1, hjust = 1, size = 9)) +
scale_fill_manual(name="Themen", values = topicFarben) +
ylab("Anteil Posts %") +
xlab("") +
ggtitle("Themen-Aufteilung in der Gruppe der PolitikerInnen", subtitle = "Prozentuale Anteile. Annotiert mit absoluten Posts/Thema")
# ggplotly(stackedbar_politiker)
ggplot(data = medienAggregiert, aes(x=Zuweisung, y=prozent, fill=names)) +
geom_bar(stat="identity", position = "dodge", width = 1.1) +
geom_label(aes(label = anzahlAbs), vjust=-0.2, position = position_dodge(1.1)) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 35, vjust = 1, hjust = 1, size = 9)) +
scale_fill_manual(name="Themen", values = topicFarben) +
ylab("Anteil Posts %") +
xlab("") +
ggtitle("Themen-Aufteilung in den Medien", subtitle = "Prozentuale Anteile. Annotiert mit absoluten Posts/Thema")
# ggplotly(stackedbar_medien)
# ==============================================================================================================================================
# ==============================================================================================================================================
# ==============================================================================================================================================
########################################
# Zeitreihendaten zur Analyse ##########
########################################
# datensätze
# gesamte daten
timeseriesPolitikerWest <- timePol_maximus %>% filter(bundesland %in% westdeutschland)
timeseriesPolitikerOst <- timePol_maximus %>% filter(bundesland %in% ostdeutschlandListe)
# afd west und ost
TS_westAfd <- timePol_maximus %>%
filter(bundesland %in% westdeutschland) %>%
filter(partei == "AfD")
TS_ostAfd <- timePol_maximus %>%
filter(bundesland %in% ostdeutschlandListe) %>%
filter(partei == "AfD")
timePol_maximus_afd <- timePol_maximus %>% filter(partei == "AfD")
timePol_maximus_spd <- timePol_maximus %>% filter(partei == "SPD")
timePol_maximus_fdp <- timePol_maximus %>% filter(partei == "FDP")
unique(timePol_maximus_afd$user)
dim(TS_ostAfd)
dim(TS_westAfd)
# scale(timeseriesPolitikerOst$ukraine, center = T, scale = T) # z standardisierung
# plot zum thema ukrainekrieg im zeitverlauf, ost und west
ukraine_TS_allg <- ggplot() +
stat_summary(data = timeseriesPolitikerWest, aes(dateTime, ukraine, colour = "Westen"), geom = "line", fun = sum) +
stat_summary(data = timeseriesPolitikerOst, aes(dateTime, ukraine, colour = "Osten"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
scale_colour_manual(name="", values = geographie) +
ggtitle(label = "Themenbehandlung Ukrainekrieg", subtitle = "Vergleich Ost- und Westdeutschland") +
xlab("") +
ylab("Erwähnungen (absolut)")
# plot zum thema ukrainekrieg im zeitverlauf, ost und west mit afd fokus
ukraine_TS_Afd <- ggplot() +
stat_summary(data = TS_westAfd, aes(dateTime, ukraine, colour = "Westen"), geom = "line", fun = sum) +
stat_summary(data = TS_ostAfd, aes(dateTime, ukraine, colour = "Osten"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
scale_colour_manual(name="", values = geographie) +
ggtitle(label = "Themenbehandlung Ukrainekrieg durch\nPolitiker der AfD", subtitle = "Vergleich Ost- und Westdeutschland") +
xlab("") +
ylab("Erwähnungen (absolut)")
ggarrange(ukraine_TS_allg, ukraine_TS_Afd,
common.legend = T, legend = "top",
ncol = 1, nrow = 2)
# ===============================================================================================================================================
# aktivste user zum thema covid in den parteien vergleichen
# erstellen einer informativen, dashboard-artigen visualisierung
timePol_maximus_afd <- timePol_maximus %>% filter(partei == "AfD")
timePol_maximus_spd <- timePol_maximus %>% filter(partei == "SPD")
timePol_maximus_fdp <- timePol_maximus %>% filter(partei == "FDP")
# unique(timePol_maximus_afd$user)
activeCovidUsers <- timePol_maximus %>% group_by(user) %>% filter(sum(covid) >= 100)
activeCovidUsers_afd <- timePol_maximus_afd %>% group_by(user) %>% filter(sum(covid) >= 100)
activeCovidUsers_spd <- timePol_maximus_spd %>% group_by(user) %>% filter(sum(covid) >= 100)
activeCovidUsers_fdp <- timePol_maximus_fdp %>% group_by(user) %>% filter(sum(covid) >= 100)
unique(activeCovidUsers$user)
unique(activeCovidUsers_afd$user)
unique(activeCovidUsers_spd$user)
a <- ggplot() +
stat_summary(data = activeCovidUsers, aes(dateTime, covid, fill=partei), color="grey25", position = "fill", geom = "area", fun = sum, na.rm = T) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11.5) +
ggtitle(label = "Das Thema COVID-19", subtitle = "Behandlung des Themas in Abhängigkeit von der Partei") +
scale_fill_manual(name="Parteien", values = parteifarben) +
xlab("") +
ylab("Erwähnungen (absolut)")
b <- ggplot() +
stat_summary(data = activeCovidUsers_afd, aes(dateTime, covid), color="#0087c1", geom = "line", fun = sum) +
#stat_summary(data = activeCovidUsers_spd, aes(dateTime, covid), color="#e40006", geom = "line", fun = sum) + #effektiv karl lauterbach alleine
stat_summary(data = activeCovidUsers_fdp, aes(dateTime, covid), color="#ffee00", geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11.5) +
ggtitle(label = "Behandlung des Themas COVID", subtitle = "Zeitverlauf für PolitikerInnen der AfD und der SPD im Vergleich") +
scale_fill_manual(name="PolitikerInnen", values = sechzehnFarben) +
xlab("") +
ylab("Erwähnungen (absolut)")
# graphik für politiker mit mind. 80 tweets zum thema COVID über untersuchungszeitraum
c <- timePol_userParty %>%
filter(covid >= 100) %>%
mutate(user = fct_reorder(user, desc(-covid))) %>%
ggplot(aes(y=user, x=covid, fill=partei)) +
geom_bar(position="dodge", stat="identity") +
scale_fill_manual(name="Parteizugehörigkeit", values = parteifarben) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5)) +
xlab("Posts zum Thema 'covid'") +
ylab("Usernamen") +
ggtitle(label = "POLITIKERINNEN zum Thema COVID", subtitle = "Graphik für jene mit mind. 100 Tweets/Thema")
arrangement_politiker_covid <- ggarrange(a, ggarrange(b, c, ncol = 2, labels = c("2)", "3)")), nrow = 2, labels = "1)")
annotate_figure(arrangement_politiker_covid,
bottom=text_grob("Hinweis: Gezählte Beiträge der SPD in diesen Graphiken stammen allein von Gesundheitsminister K. Lauterbach.",
face = "italic",
size = 8,
color = "black"))
# ==============================================================================
# gruppe der politiker + wichtigste themen in einer graphik
# versuch der erkennung eines musters von interner themendynamik a la Rauchfleisch et al. (2021)
# funktioniert: 1 spalte = 100% für ein topic, jeder tag wird in prozentualem anteil am gesamtvolumen eines topics gemessen
# ist nur schlecht darstellbar, da extrem kleine werte
proportional_timePol_topics <- as_tidytable(apply(timePol_topics[,-1], MARGIN = 2, FUN = newNormalPol))
proportional_timePol_topics$dateTime <- timePol_topics$dateTime
# beobachtung: mehr als 3 themen pro graphik wird enorm unübersichtlich
testgraphik <- ggplot(data = timePol_topics) +
geom_line(aes(x=dateTime, y=ukraine, color="ukraine")) +
geom_line(aes(x=dateTime, y=verteidigungspolitik, color="verteidigungspolitik")) +
scale_color_manual(name="Thema", values = topicFarben) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5))
testgraphik
ggplotly(testgraphik)
# themenüberblickPolitiker %>% mutate(names = fct_reorder(names, desc(anzahl)))
# graphik für politiker mit mind. 80 tweets zum thema COVID über untersuchungszeitraum
timePol_userParty %>%
filter(covid >= 100) %>%
mutate(user = fct_reorder(user, desc(-covid))) %>%
ggplot(aes(y=user, x=covid, fill=partei)) +
geom_bar(position="dodge", stat="identity") +
scale_fill_manual(name="Parteizugehörigkeit", values = parteifarben) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5)) +
xlab("Posts zum Thema 'covid'") +
ylab("Usernamen") +
ggtitle(label = "POLITIKERINNEN zum Thema COVID", subtitle = "Graphik für jene mit mind. 80 Tweets/Thema")
# graphik für politiker mit mind. 100 tweets zum thema UKRAINE über untersuchungszeitraum
timePol_userParty %>%
filter(ukraine >= 100) %>%
mutate(user = fct_reorder(user, desc(-ukraine))) %>%
ggplot(aes(y=user, x=ukraine, fill=partei)) +
geom_bar(position="dodge", stat="identity") +
scale_fill_manual(name="Parteizugehörigkeit", values = parteifarben) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5)) +
xlab("Posts zum Thema 'covid'") +
ylab("Usernamen") +
ggtitle(label = "POLITIKERINNEN zum Thema UKRAINE", subtitle = "Graphik für jene mit mind. 100 Tweets/Thema")
# ==============================================================================================================================================
# vorarbeiten für die graphik zum vergleich medien vs. politik und wer welche themen zuerst anspricht
# gleiches für medien mit dem thema COVID
medienCovid1200 <- timeMedia_userBundesland %>%
filter(covid >= 1200) %>%
mutate(user = fct_reorder(user, desc(-covid))) %>%
ggplot(aes(y=user, x=covid, fill=bundesland)) +
geom_bar(position="dodge", stat="identity") +
geom_text(aes(label = bundesland), hjust=-.05) +
scale_fill_manual(values = bundesländer) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5)) +
xlab("Posts zum Thema 'covid'") +
ylab("Usernamen") +
ggtitle(label = "MEDIEN zum Thema COVID", subtitle = "Graphik für jene mit mind. 1200 Tweets/Thema")
# UKRAINE TOPIC (wäre cool mit discursive power variablen, evtl neuer versuch starten mit zugehörigen datensätzen)
medienUkraine1200 <- timeMedia_userBundesland %>%
filter(ukraine >= 1200) %>%
mutate(user = fct_reorder(user, desc(-ukraine))) %>%
ggplot(aes(y=user, x=ukraine, fill=bundesland)) +
geom_bar(position="dodge", stat="identity") +
geom_text(aes(label = bundesland), hjust=-.05) +
scale_fill_manual(values = bundesländer) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5)) +
xlab("Posts zum Thema 'covid'") +
ylab("Usernamen") +
ggtitle(label = "MEDIEN zum Thema UKRAINE", subtitle = "Graphik für jene mit mind. 1200 Tweets/Thema")
ggarrange(legend = "bottom", common.legend = F, medienUkraine1200, medienCovid1200)
normalize <- function(v, na.rm = FALSE) (v - min(v, na.rm = na.rm))/diff(range(v, na.rm = na.rm)) ## stackoverflow, macht aber das gleiche wie meine funktion, aber bezieht dabei die NAs mit ein, wobei sich keine darin befinden dürften -- an sich also obsolet
obj <- lapply(timePol_topics[,-c(1, 17:19)], FUN = minMaxNorm)
obj <- as_tidytable(obj)
obj$dateTime <- timePol_topics$dateTime
objMed <- lapply(timeMedia_topics[,-c(1, 17:19)], FUN = minMaxNorm)
objMed <- as_tidytable(objMed)
objMed$dateTime <- timeMedia_topics$dateTime
# ==============================================================================================================================================
# wichtige graphik zum vergleich: wer bespricht ein thema zuerst
TSukrainePolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, ukraine, colour = "ukraine"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de"), date_breaks = "2 weeks") +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Themenbehandlung Ukraine") +
xlab("") +
ylab("Erwähnungen (normalisiert)")
TSenergiePolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, energie, colour = "energie"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de"), date_breaks = "2 weeks") +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Themenbehandlung Energie") +
xlab("") +
ylab("Erwähnungen (normalisiert)")
ts_energieCovidPol_überschneidend <- ggplot() +
stat_summary(data = obj, aes(dateTime, ukraine, colour = "ukraine"), geom = "line", fun = sum) +
stat_summary(data = obj, aes(dateTime, energie, colour = "energie"), geom = "line", fun = sum) +
stat_smooth(data = obj, aes(dateTime, ukraine), colour="blue3") +
stat_smooth(data = obj, aes(dateTime, energie), colour="yellow3") +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de"), date_breaks = "2 weeks") +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Vergleichsgraphik Ukraine und Energie", subtitle = "Vergleich des zeitlichen Verlaufs der Themen über den Beobachtungszeitraum inkl. geglätteter Trendlinie") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================
TSsozialesPolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, soziales, colour = "soziales"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Themenbehandlung Soziales") +
xlab("") +
ylab("Erwähnungen (absolut)")
TScovidPolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, covid, colour = "covid"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Themenbehandlung Covid") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================
TSklimaPolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, klima, colour = "klima"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Themenbehandlung Klima") +
xlab("") +
ylab("Erwähnungen (absolut)")
TSverkehrPolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, verkehr, colour = "verkehr"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "PolitikerInnen: Themenbehandlung Verkehr") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================
TSzukunftPolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, zukunft, colour = "zukunft"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "POLITIKERINNEN: Themenbehandlung Zukunft") +
xlab("") +
ylab("Erwähnungen (absolut)")
TSverteidigungPolitiker <- ggplot() +
stat_summary(data = obj, aes(dateTime, verteidigungspolitik, colour = "verteidigungspolitik"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "POLITIKERINNEN: Themenbehandlung Verteidigungspolitik") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================# ==============================================================================================================================================# ==============================================================================================================================================
# time series ukraine, energie, soziales, zukunft, covid medien
TSukraineMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, ukraine, colour = "ukraine"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Ukraine") +
xlab("") +
ylab("Erwähnungen (normalisiert)")
TSenergieMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, energie, colour = "energie"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Energie") +
xlab("") +
ylab("Erwähnungen (normalisiert")
ggplot() +
stat_summary(data = objMed, aes(dateTime, ukraine, colour = "ukraine"), geom = "line", fun = sum) +
stat_summary(data = objMed, aes(dateTime, energie, colour = "energie"), geom = "line", fun = sum) +
stat_smooth(data = objMed, aes(dateTime, ukraine), colour = "blue") +
stat_smooth(data = objMed, aes(dateTime, energie), colour = "yellow") +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Ukraine und Energie im Vergleich", subtitle = "Inklusive integrierter geglättetem Gesamttrend") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================
TSsozialesMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, soziales, colour = "soziales"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Soziales") +
xlab("") +
ylab("Erwähnungen (absolut)")
TScovidMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, covid, colour = "covid"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Covid") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================
TSklimaMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, klima, colour = "klima"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Klima") +
xlab("") +
ylab("Erwähnungen (absolut)")
TSverkehrMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, verkehr, colour = "verkehr"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "Medien: Themenbehandlung Verkehr") +
xlab("") +
ylab("Erwähnungen (absolut)")
# ==============================================================================================================================================
TSzukunftMedien <- ggplot() +
stat_summary(data = objMed, aes(dateTime, zukunft, colour = "zukunft"), geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
scale_colour_manual(name="", values = topicFarben) +
scale_y_percent() +
ggtitle(label = "MEDIEN: Themenbehandlung Zukunft") +