forked from yaleemmlc/admissionprediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_final_keras_onlytriage.R
56 lines (43 loc) · 1.49 KB
/
build_final_keras_onlytriage.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#Fit final DNN model w/ optimized parameters (onlytriage) (Github)
library(readr)
library(dplyr)
library(reshape2)
library(parallel)
library(caret)
library(xgboost)
library(doMC)
library(pROC)
library(keras)
#1) create train/test split
load('./Results/5v_sparseMatrix_onlytriage.RData')
load('./Results/5v_indeces_list.RData')
indeces <- indeces_list[[1]]
x <- as.matrix(dataset$x)
y <- dataset$y
rm(dataset)
x_test <- x[indeces$i_test,]
y_test <- y[indeces$i_test]
x_train <- x[-indeces$i_test,]
y_train <- y[-indeces$i_test]
rm(x); rm(y)
#4) impute dataset for keras
impute <- preProcess(x_train, method = c('center','scale','medianImpute'))
x_train <- predict(impute, x_train)
x_test <- predict(impute, x_test)
#3) build keras on all data except test set, using the tuned parameters
model <-keras_model_sequential()
model %>%
layer_dense(units = 300, activation = 'relu', input_shape = ncol(x_train)) %>%
layer_dense(units = 100, activation = 'relu') %>%
layer_dense(units = 1, activation = 'sigmoid') %>%
compile(
loss = 'binary_crossentropy',
optimizer = optimizer_rmsprop(lr = 0.001),
metrics = c('accuracy')
)
model %>% fit(x_train, y_train, epochs = 3, batch_size = 128)
keras_pred_test <- as.vector(predict(model, x_test))
save(keras_pred_test, file = './Results/5v_keras_pred_test_onlytriage.RData')
print('Keras onlytriage AUC')
roc(y_test, keras_pred_test)
ci.auc(roc(y_test, keras_pred_test), conf.level = 0.95)